## B.Sc. Mathematics

Under Choice Based Credit System (CBCS)
SCHEME OF EXAMINATIONS
Program code: updated April- 2020(June onwards)

| Semester - I |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S. <br> No. | Course <br> Code | Part | Title of the Paper | Hrs. | Credi ts | Exam Hrs. | Max. Marks |  |  |
|  |  |  |  |  |  |  | Int. | Ext. | Total |
| 1 | $\begin{gathered} \text { 20UGC1TA1/1 } \\ \text { HI1 } \end{gathered}$ | I | Tamil - I Amutha Tamil / Hindi - I | 6 | 3 | 3 | 50 | 50 | 100 |
| 2 | 20UGC1EN1 | II | English - I | 6 | 3 | 3 | 50 | 50 | 100 |
| 3 | 20UMA1C01 | III | Core 1 - Classical Algebra | 6 | 5 | 3 | 50 | 50 | 100 |
| 4 | 20UMA1C02 | III | Core 2 - Calculus | 6 | 5 | 3 | 50 | 50 | 100 |
| 5 | 20UMA1AL1 | III | Allied - 1: Physics -I | 4 | 4 | 3 | 35 | 35 | 70 |
| 6 | 20UMA2AP1 | III | Allied - Physics Practical | 2 | - | - | - | - | - |
| Semester I Total |  |  |  | 30 | 20 |  | 235 | 235 | 470 |


| Semester - II |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S. No. | Course <br> Code | Part | Title of the Paper | Hrs. | Credits | Exam Hrs. | Max. Marks |  |  |
|  |  |  |  |  |  |  | Int. | Ext. | Total |
| 1 | 20UGC2TA2/2HI2 | I | Tamil - II Kappiya Tamil / Hindi - II | 6 | 3 | 3 | 50 | 50 | 100 |
| 2 | 20UGC2EN2 | II | English - II | 6 | 3 | 3 | 50 | 50 | 100 |
| 3 | 20UMA2C03 | III | Core 3 - Differential Equations and Laplace Transforms | 6 | 5 | 3 | 50 | 50 | 100 |
| 4 | 20UMA2C04 | III | Core 4 - Trigonometry, Vector Calculus and Fourier Series | 6 | 5 | 3 | 50 | 50 | 100 |
| 5 | 20UMA2AL2 | III | Allied 2 - Physics II | 4 | 4 | 3 | 35 | 35 | 70 |
| 6 | 20UMA2AP1 | III | Allied - Physics Practical | 2 | 2 | 3 | 30 | 30 | 60 |
| 7 | 20UGC2ENS | IV | Environmental Studies |  | 2 | 2 | - | 50 | 50 |
| Semester II Total |  |  |  | 30 | 24 |  | 265 | 315 | 580 |


| Semester - III |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S. <br> No. | Course <br> Code | Part | Title of the Paper | Hrs. | Cre <br> dits | Exam Hrs. | Max. Marks |  |  |
|  |  |  |  |  |  |  | Int. | Ext. | Total |
| 1 | $\begin{gathered} \text { 20UGC3TA3/ } \\ 3 \mathrm{HI} 3 \end{gathered}$ | I | $\begin{aligned} & \text { Tamil - III Deiva Tamil / } \\ & \text { Hindi - III } \end{aligned}$ | 6 | 3 | 3 | 50 | 50 | 100 |
| 2 | 20UGC3EN3 | II | English - III | 6 | 3 | 3 | 50 | 50 | 100 |
| 3 | 20UMA3C05 | III | Core 5 - Analytical Geometry of 2D \& 3D | 5 | 4 | 3 | 50 | 50 | 100 |
| 4 | 20UMA3C06 | III | Core 6 - Statics | 5 | 4 | 3 | 50 | 50 | 100 |
| 5 | 20UMA3AL3 | III | Allied 3 - Mathematical Statistics I | 6 | 5 | 3 | 50 | 50 | 100 |
| 6 | 20UMA3NM1 / <br> 20UGC3TB1 | IV | NME: I Principles of Accountancy // Basic Tamil - I | 2 | 2 | 2 | - | 50 | 50 |
| Semester III Total |  |  |  | 30 | 21 |  | 250 | 300 | 550 |


| Semester - IV |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S. <br> No. | Course <br> Code | Part | Title of the Paper | Hrs. | Cre <br> dits | Exam Hrs. | Max. Marks |  |  |
|  |  |  |  |  |  |  | Int. | Ext. | Total |
| 1 | $\begin{aligned} & \text { 20UGC4TA4 } \\ & \text { 4HI4 } \end{aligned}$ | I | ```Tamil - IV Sanga Tamil / Hindi - IV``` | 6 | 3 | 3 | 50 | 50 | 100 |
| 2 | 20UGC4EN4 | II | English - IV <br> Immortal Speeches from Shakespeare and Public Speaking | 6 | 3 | 3 | 50 | 50 | 100 |
| 3 | 20UMA4C07 | III | Core 7 - Dynamics | 5 | 4 | 3 | 50 | 50 | 100 |
| 4 | 20UMA4C08 | III | Core 8 - Numerical Methods | 5 | 4 | 3 | 50 | 50 | 100 |
| 5 | 20UMA4AL4 | III | Allied 4 - Mathematical Statistics II | 6 | 5 | 3 | 50 | 50 | 100 |
| 6 | */ 20UGC4TB2 | IV | NME: II*/ <br> Basic Tamil - II | 2 | 2 | 2 | - | 50 | 50 |
| 7 | 20UGC4VAE | IV | Value Education | - | 2 | 2 | - | 50 | 50 |
| 8 | 20UGC4 <br> NCC/NSS/SPO/Y RC | V | Extension Activities (NSS / NCC / Sports/YRC) | - | 1 | - | 25 | 25 | 50 |
| Semester IV Total |  |  |  | 30 | 24 |  | 275 | 375 | 650 |


| Semester - V |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S. No. | Course <br> Code | Part | Title of the Paper | Hrs. | Credits | Exam Hrs. | Max. Marks |  |  |
|  |  |  |  |  |  |  | Int. | Ext. | Total |
| 1 | 20UMA5C09 | III | Core 9 - Modern Algebra | 5 | 5 | 3 | 50 | 50 | 100 |
| 2 | 20UMA5C10 | III | Core 10 - Real Analysis I | 5 | 5 | 3 | 50 | 50 | 100 |
| 3 | 20UMA5C11 | III | Core 11 - Complex Analysis | 5 | 4 | 3 | 50 | 50 | 100 |
| 4 | 20UMA5C12 | III | Core 12 - Discrete Mathematics | 4 | 4 | 3 | 50 | 50 | 100 |
| 5 | 20UMA5C13 | III | Core 13 - Operations Research I | 5 | 4 | 3 | 50 | 50 | 100 |
| 6 | 20UMA5EL1 | III | Elective 1 : Web Programming | 4 | 4 | 3 | 50 | 50 | 100 |
| 7 | 20UMA6EP1 | III | Elective Practical: Web Programming and ' C | 2 | - | - | - | - | - |
| Semester V Total |  |  |  | 30 | 26 |  | 300 | 300 | 600 |


| Semester - VI |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S. No. | Course <br> Code | Part | Title of the Paper | Hrs. | Credits | Exam Hrs. | Max. Marks |  |  |
|  |  |  |  |  |  |  | Int. | Ext. | Total |
| 1 | 20UMA6C14 | III | Core 14 - Linear Algebra | 5 | 5 | 3 | 50 | 50 | 100 |
| 2 | 20UMA6C15 | III | Core 15 - Real Analysis II | 5 | 5 | 3 | 50 | 50 | 100 |
| 3 | 20UMA6C16 | III | Core 16 - Special Functions | 4 | 4 | 3 | 50 | 50 | 100 |
| 4 | 20UMA6C17 | III | Core 17 - Operations Research II | 5 | 4 | 3 | 50 | 50 | 100 |
| 5 | 20UMA6C18 | III | Core 18 - Number <br> Theory | 5 | 4 | 3 | 50 | 50 | 100 |
| 6 | $\begin{aligned} & \text { 20UMA6EA2 } \\ & \text { / 6EB2 } \end{aligned}$ | III | Elective 2 : Introduction to "C" / Data Science using R | 4 | 4 | 3 | 50 | 50 | 100 |
| 7 | 20UMA6EP1 | III | Elective Practical: Web <br> Programming and ${ }^{\circ} \mathrm{C}$ | 2 | 2 | 3 | 50 | 50 | 100 |
| Semester VI Total |  |  |  | 30 | 28 | 3 | 350 | 350 | 700 |

Programme : B.Sc. Mathematics
Course Title : Core 1: Classical Algebra
Year : First Year
Hours/Week : 6

| Course Code | $:$ | 20UMA1C01 |
| :--- | :--- | :--- |
| Semester | $:$ | I |
| Credits | $:$ | 5 |

Course Objectives

1. To get the knowledge of convergence and divergence of a series.
2. To know how to find the summation of series.
3. To understand the nature of the roots of the algebraic equations.

## Course Outcomes (CO)

| CO 1 | Finding the roots of polynomial functions. | K1 |
| :--- | :--- | :---: |
| CO 2 | Classifying convergence and divergence of series. | K2 |
| CO 3 | Applying the Binomial theorem, Exponential theorem, logarithmic theorem to <br> find the summation of series. | K3 |
| CO 4 | Analyzing the nature of the roots of the equations. | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | S | S | S | S | S | S | S | S | S |
| CO 2 | S | S | S | S | S | S | S | $S$ | S | S |
| CO3 | S | S | S | M | M | S | M | S | M | M |
| CO4 | S | S | S | M | L | M | S | M | S | L |

S - Strong; M - Medium; L - Low

## Unit -I

CONVERGENCY AND DIVERGENCY OF SERIES: Infinite series - Geometric series* - some general theorems concerning infinite series- The series is convergent when k is greater than unity and divergent when $k$ equal to or less than unity - Cauchy's condensation test- D'Alembert's Ratio test Cauchy's Root test - Raabe's test.

## Chapter 2: Sections 8-19

## Unit-II

BINOMIAL THEOREM: Binomial theorem - Positive integral index -The greatest term in the expansion of $(1+x)^{n *}$ - Summation of various series involving binomial coefficients - Vandermonde's theorem - Binomial theorem for a rational index - Some important particular cases of Binomial expansion - The method of splitting functions into partial fractions - Application of the binomial theorem to the summation of series.

## Chapter 3: Sections 1 - 10

## Unit -III

EXPONENTIAL AND LOGARITHMIC SERIES: The Exponential theorem - Summation - The Logarithmic series - Euler's constant - summation* - The application of the exponential and logarithmic series to limits and approximations.
Chapter 4 Sections:1-11

## Unit -IV

THEORY OF EQUATIONS: Roots of an equation* - Relations between the roots and co- efficient of equations - Symmetric functions of the roots - Transformation of equations - Reciprocal equations
Chapter 6. Sections: 1 to 12, 15 \& 16

## Unit -V

THEORY OF EQUATIONS: To increase or decrease the roots of a given equation by a given quantity - Removal of terms - Descartes' Rule of signs - Roll's theorem* - Multiple roots - Strum's theorem Horner's method of approximation.

## Chapter 6 Sections: 17, 19, 24 - 27 and 30. (Omit section 30.1)

* denotes self-study (Questions may be asked from these portions also)

Book for study:
Manickavachagam Pillay, T. Natarajan, K. S. Ganapathy, Algebra, Vol. I, S. Viswanathan Pvt. LTD, 2007.

## Books for reference:

1. P. N. Chatterji, Algebra, Rajhans Prakasham Mandir, Meerut (U.P), 1994.
2. M. L. Khanna, Algebra, Jai Prakash Nath\& Co, Meerut (U.P), 1991.
3. A. R. Vasishtha and R. K. Gupta, Krishna Prakasham Mandir, Meerut (U.P), 1990-91.

Programme : B.Sc. Mathematics
Course Title : Core 2: Calculus Course Code : 20UMA1C02
Year : First Year Semester : I
Hours/Week : 6 Credits : 5

## Course Objectives

1. To give basic knowledge about Mathematical concepts in calculus.
2. To evaluate double and triple integrals.
3. To learn different methods of integration, Beta and Gamma functions which forms the basis for higher studies.

Course Outcomes (CO)

| CO1 | Remembering the formulas in differentiation and integration. | K1 |
| :--- | :--- | :---: |
| CO 2 | Interpret the definite integral geometrically as the area under a curve. | K2 \& K3 |
| CO 3 | Apply the concept of definite integral to solve various kinds of problems. | K 3 |
| CO 4 | Analyze the values of the derivative at a point algebraically. | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | M | M | M | L |  | M | S | M | S | M |
| CO 2 | S | S | S | S | M |  | S | S | S | S | M |
| CO 3 | S | S | S | S | M |  | S | S | M | S | S |
| CO 4 | S | S | S | S | M |  | S | S | M | S | M |

S - Strong; M - Medium; L - Low

## Unit-I

CURVATURE OF PLANE CURVES: Curvature - Circle, radius and centre of curvature - Cartesian formula for the radius of curvature - The coordinates of the centre of curvature - Evolute and involute Radius of curvature when the curve is given in polar co-ordinates* - Pedal equation of a curve - finding asymptotes of rational algebraic curves.

## Chapter X: Sections 2.1 to 2.7, Chapter XI: Sections 1 to 4

## Unit-II

INTEGRATION: Integration of rational algebraic functions - Integration of irrational functions Properties of definite integrals*.

## Chapter 1: Sections 7 to 11

## Unit-III

MULTIPLE INTEGRALS: Evaluation of the double integral - Change of order of integration Double integral in polar co-ordinates - Triple integrals - Applications of Multiple integrals - Volumes of solids of revolution - Volumes of solids as double integrals- Volume as a triple integral*.

## Chapter 5: Sections 1 to6.3

UNIT- IV
IMPROPER INTEGRALS: Beta and Gamma functions - Recurrence formula for Gamma functions - Properties of Beta functions* - Relation between Beta and Gamma functions - Applications of Gamma functions to multiple integrals.

## Chapter 7: Sections 2.1 to 6

## Unit - V

CHANGE OF VARIABLES: Jacobian - Two important results regarding Jacobians - Change of variables in the case of two variables - Change of variables in the case of three variables. Transformation from Cartesian to polar co-ordinates - Transformation from Cartesian to spherical polar coordinates*.

## Chapter 6: Sections 1.1 to 2.4

## * denotes self-study (Questions may be asked from these portions also)

## Books for study:

1. S. Narayanan and T. K. M. Pillai, Calculus, Vol-1, Viswanathan Publishers, 2007. For Unit I
2. S. Narayanan and T. K. M. Pillai, Calculus, Vol-2, Viswanathan Publishers, 2007.

For Units II to V

## Books for reference:

1. N. P. Bali, Integral Calculus, Laxmi Publications, $4^{\text {th }}$ Edition, 1980.
2. A. R. Vasishtha and S. K. Sharma, Integral Calculus, Krishna Prakashan Mandir, Meerut, 1990.
3. Shanthi Narayan, Differential Calculus, Shyam Lal Charitable Trust, New Delhi, 1993.

## e-resources:

1. https://www.math24.net/integration-rational-functions
2. https://www.rtu.ac.in/expert/app/documents/kjangid@rtu.ac.in_21829122020100843am.pdf
3. https://math.libretexts.org/Bookshelves/Calculus/Book\%3A_Calculus_(OpenStax)
4. https://www.youtube.com/watch? $\mathrm{v}=6 \mathrm{ntZ1KQL} 04 \mathrm{~A} \& \mathrm{t}=15 \mathrm{~s}$
5. https://www.youtube.com/watch? v=gAOwckHIDl8

| Programme | $:$ | B.Sc. Mathematics |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Title | Core 3: Differential Equations and |  |  |  |  |
| Year | Laplace Transforms | Course Code | : 20UMA2C03 |  |  |
| Hours/Week | $:$ | First Year | Semester | $:$ | II |
| Course Objectives |  | Credits | $:$ | 5 |  |

1. To solve second-order linear differential equations with constant and variable coefficients.
2. To get the ability of solving first and second order ordinary differential equations and first order partial differential equations.
3. To get the knowledge about Laplace and inverse Laplace transforms.

## Course Outcomes (CO)

| CO 1 | Recalling the concept of first order linear differential equations. | K 1 |
| :--- | :--- | :---: |
| CO 2 | Understanding the concept of first order higher degree ordinary differential <br> equations | K 2 |
| CO 3 | Solving Linear partial differential equations by using the Lagrange's method. | K3 \& K4 |
| CO 4 | Analyzing the concepts of Laplace transforms and inverse Laplace transforms to <br> solve ODE with constant and variable coefficients. | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | M | L | M | M | L |  | M | S | M | S | M |
| CO 2 | S | M | M | S | S |  | S | M | S | S | M |
| CO 3 | S | S | S | M | M |  | M | S | M | M | S |
| CO 4 | M | M | S | S | S | S | S | M | S | L | S |

S - Strong; M - Medium; L - Low

## Unit -I

DIFFERENTIAL EQUATIONS: Equations of the first order and the first degree - Variable separable - Homogeneous equations - Non homogeneous equations of the first degree in x and y - Linear equation*- Bernoulli's equation. Differential Equations of the first order, but of the higher degree Equations solvable for $\mathrm{dy} / \mathrm{dx}$ - Equations solvable for y - Equations solvable for x - Clairaut's form.

## Vol III: Chapter 1 section 2.1 to 2.5,5.1 to 6.1

Unit -II
DIFFERENTIAL EQUATIONS (cont.): Linear differential equations with constant coefficients special methods of finding particular integral - Linear equations with variable coefficients - Equations reducible to the linear homogeneous equations - Variation of parameters*.
Vol III: Chapter 2 sections 2 to 4, 8 to 10
Unit - III
DIFFERENTIAL EQUATIONS ( cont.) : Simultaneous equations of the first order and first degree Methods for solving $d x / P=d y / Q=d z / R$ simultaneous linear differential equations with constant coefficients.

## VOL III: Chapter 3 sections 1 to 6

## Unit -IV

PARTIAL DIFFERENTIAL EQUATIONS: Derivation of partial differential equations by elimination of arbitrary constants and arbitrary functions - Different integrals of partial differential equations - standard types of first order equations* - Lagrange's equations.

## Vol III: Chapter 4, Omit section 4, 5.5 and 7.0

Unit -V
LAPLACE TRANSFORMS: Laplace transforms - Definition - Transform of $f(t)$, - exp at, cos at, $\sin$ at ${ }^{*}$ and $\mathrm{t}^{\mathrm{n}}$ when n is an integer - The inverse Laplace transform - Laplace transforms to solve ordinary differential equations with constant and variable co-efficient - to solve system of differential equations.

## Vol III Chapter 5

## * denotes self-study (Questions may be asked from these portions also)

Book for study:
T. K. Manicavachagam Pillay and S. Narayanan, Calculus Vol III, S. Viswanathan Printers, 2007.

## Books for reference:

1. N. P. Bali, Differential Equations, Laxmi Publications (P) Ltd., New Delhi, 2004.
2. Dr. J. K. Goyal and K. P. Gupta, Laplace and Fourier Transforms, Pragati Prakashan Publishers, Meerut, 2000.

## e-resources:

1. http://www.nptelvideos.in/2012/11/mathematics-iii.html
2. https://www.whitman.edu/mathematics/calculus_online/chapter17.html
3. https://www.khanacademy.org/math/differential-equations

Programme : B.Sc. Mathematics
Course Title
$\begin{array}{ll}\text { Year } & : \text { First Year } \\ \text { Hours/Week } & : 6\end{array}$

| Course Code | $:$ | 20UMA2C04 |
| :--- | :--- | :--- |
| Semester | $:$ | II |
| Credits | $:$ | 5 |

## Course Objectives

1. To enable the students to provide basic knowledge of trigonometry
2. To inculcate the knowledge of vector calculus and integral theorems
3. To understand the expansions of Fourier series.

## Course Outcomes (CO)

| CO1 | Understanding the hyperbolic and inverse hyperbolic functions. | K1 |
| :--- | :--- | :---: |
| CO 2 | Illustrating the Fourier co-efficient for periodic functions. | K2 |
| CO 3 | Applying the differential operator to find gradient, divergence and curl. | K3 |
| CO 4 | Examining the multiple integrals by applying Gauss divergence theorem, Stoke's <br> theorem and Green's theorem. | K4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | M | M | M | S |  | M | S | M | S | S |
| CO 2 | S | M | S | S | M |  | S | S | M | S | S |
| CO 3 | S | S | L | S | M | M |  |  |  |  |  |
| CO 4 | M | S | S | S | M |  | S | M | S | S |  |
| C | S | S | M | S | M |  |  |  |  |  |  |

S - Strong; M - Medium; L - Low

## Unit -I

TRIGONOMETRY: Expansions of $\cos n \theta, \sin n \theta, \tan n \theta, \tan (\mathrm{~A}+\mathrm{B}+\mathrm{C}+\ldots), \cos \theta, \sin \theta$, Hyperbolic functions - Inverse Hyperbolic functions*- Separation of real and imaginary parts of Hyperbolic functions.

## Chapter. III: Sec 1, 2, 3, 5, Chapter. IV

Unit -II
TRIGONOMETRY: Logarithms of Complex quantities - Summation of Trigonometric series.
Chapter. V: Sec 5, Chapter. VI

## Unit III

VECTOR CALCULUS: Scalar and Vector point function - Differentiation of vectors* - Directional derivative - gradient, divergence and curl.

## Chapter 1 and Chapter 2

## Unit -IV

VECTOR CALCULUS: Integration of vectors - line, surface and volume integrals* - Integral theorems and their applications.

## Chapter 3 and Chapter 4

## Unit -V

FOURIER SERIES: Definition - finding Fourier coefficient for a given periodic function with period $2 \pi$ - odd and even functions*, Change of Interval.
Chapter VI: Sec 1, 2, 3 and 6

* denotes self-study (Questions may be asked from these portions also)

Books for study:

1. S. Narayanan and Manickavachagam Pillai, Trigonometry, S. Viswanathan (Printers and Publishers) PVT Ltd

For Units I and II.
2. N. Namasivayam, Vector Calculus, S. Viswanathan (Printers and Publishers) PVT Ltd.

For Units III and IV.
3. T.K.ManicavachagamPillay and S.Narayanan, Calculus - Vol III, S.Viswanathan Printers, 2007. For Unit V.

## Books for reference:

1. P. Kandasamy and K. Thilagavathi, Mathematics, S. Chand's and Company Ltd., New Delhi 55, 2004.
2. S. Narayanan and T. K. Manicavasagampillay, Vector Algebra and Analysis, S. Viswanathan Printers and Publishers Pvt., Ltd, 1995.
3. K. Viswanathan and S. Selvaraj, Vector Analysis, Emerald Publishers, Chennai - 2, 1998.

## e-resources:

1. https://www.youtube.com/watch?v=uMXcKY_w3w4
2. https://www.youtube.com/watch?v=TYOYID9gJxM
3. https://www.youtube.com/watch?v=NyG0vRn5FfU

Programme : B.Sc. Mathematics
Course Title
Core 5 : Analytical Geometry of
Year : Second Year
Hours/Week : 5

| Course Code | $:$ | 20UMA3C05 |
| :--- | :--- | :--- |
| Semester | $:$ | III |
| Credits | $:$ | 4 |

## Course Objectives

1. To gain knowledge about co-ordinate geometry.
2. To know the basic concepts of cone and cylinder.
3. To determine co-ordinate axes and co-ordinate planes in the dimensional space.

Course Outcomes (CO)

| CO 1 | Remembering the equation of a line that passes through a given point which is <br> parallel or perpendicular to a given line. | K 1 |
| :--- | :--- | :---: |
| CO 2 | Understanding the results based on the properties of a sphere. | K 2 |
| CO 3 | Identifying conic sections. | $\mathrm{K} 1 \& \mathrm{~K} 3$ |
| CO 4 | Analyzing the concepts of geometry. | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | M | M | M | M | M | S | M | S | M |
| CO 2 | S | S | S | S | M | S | S | S | S | M |
| CO 3 | S | S | S | S | L | S | S | M | S | S |
| CO 4 | S | S | S | S | M | S | S | M | S | M |

S - Strong; M - Medium; L - Low

## Unit-I:

ANALYTICAL GEOMETRY OF 2D: POLAR equation of a Conic - Directrix - Chord - Tangent Normal* - simple problems.

## Chapter IX: Sections 9-13.

## Unit-II:

ANALYTICAL GEOMETRY 3D: DIRECTION Cosines - Direction Ratios - Planes - Equation of the plane passing through the points - Angle between the planes*- Equation of the plane through the line of intersection of two given planes.

## Chapter I: Sections 7 - 11 and Chapter II

## Unit-III:

STRAIGHT LINE: Equation of the straight lines passing through two given points - Coplanarity of straight Line - Shortest Distance (SD)* and equation of SD between two lines-simple problems.

## Chapter III: Sections 1, 2, 3, 4, 7, 8

## Unit-IV:

SPHERE: Standard equation of Sphere* - results based on the properties of a Sphere - Equation of circle on a Sphere - Equation of tangent plane to a Sphere.

## Chapter IV

## Unit-V:

CONE AND CYLINDER: Cone whose vertex is at the origin - right circular cone - Equation of a cylinder - right circular cylinder - Enveloping cylinder - Central quadrics*.
Chapter V: Sections 1, 2, 8

* denotes self-study (Questions may be asked from these portions also)


## Books for study:

1. T. K. Manickavachagam Pillai and T. Natarajan, Analytical Geometry - 2D, S. Viswanathan (Printers \& Publishers), PVT., LTD, 2007.
For Unit I.
2. T. K. Manickavachagam Pillai and T. Natarajan, Analytical Geometry - 3D, S. Viswanathan (Printers \& Publishers), PVT., LTD, 2001.
For Units II, III, IV \& V.

## Books for reference:

1. T. K. Manicavachagom Pillay and T. Natarajan, Analytical Geometry, S. Viswanathan Printers and Publishers Pvt., Ltd, 2001.
2. A. R. Vasistha and J. N. Sharma, Analytical Geometry 3D, Krishna Prakashan Media (P) Ltd, Meerut, 1997.
e-resource:
http://www.brainkart.com/article/Three-Dimensional-Analytical-Geometry_6453/

Semester : III
Credits : 4

## Course Objectives

1. To enable the knowledge of forces and moments.
2. To understand the notions of friction.
3. To solve problems under friction and equilibrium of strings.

Course Outcomes (CO)

| CO 1 | Remembering the notions of friction and equilibrium of strings and deploy them <br> in solving the problems. | $\mathrm{K} 1 \& \mathrm{~K} 3$ |
| :---: | :--- | :---: |
| CO 2 | Understanding the concepts of forces and moments. | K 2 |
| CO 3 | Applying the concepts of forces in finding the resultant of any number of forces. | K 3 |
| CO 4 | Analyzing the basics of coplanar forces and equilibrium of forces acting on a rigid <br> body and solving the problems. | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | S | S | S | M | S | S | S | S | S |
| CO 2 | S | S | S | S | M | S | S | S | S | M |
| CO3 | S | S | S | S | M | S | S | M | S | S |
| CO4 | S | S | S | S | M | S | S | M | S | M |

S - Strong; M - Medium; L - Low

## Unit -I

KINEMATICS: Mechanics, Units, Vector and Scalar quantities, A vector as a sum of three mutually perpendicular vectors, A vector as a sum of two non - perpendicular vectors.

FORCES: Force, types of forces*, magnitude and direction of the resultant of forces acting on a particle (in particular resultant of two forces acting on a particle), equilibrium examples.

EQUILIBRIUM OF A PARTICLE: Equilibrium of a particle acted on a rough inclined plane, examples.

Chapter 1, Sec. 1-5, Chapter 2 \& 6

Unit -II
FORCES ON A RIGID BODY: Moment of a vector, General motion of rigid body, equivalent or equipotent systems of forces, resultant of parallel forces*, couple, resultant of several coplanar forces.

## Chapter 7, Sec 7.1-7.6

Unit -III
Moment of the resultant force, couples in a plane or in parallel planes, resultant of a couple and a force, three coplanar forces on a rigid body, equation of the line of action of the resultant*, equilibrium of a rigid body under three coplanar forces examples.

Chapter 7, Sec 7.7-7.12
Unit -IV
A SPECIFIC REDUCTION OF A SYSTEM OF FORCES: Reduction of a system of forces to a force at a chosen point and a couple, central axis*, problems involving frictional force, problems involving tilting of bodies, examples.

## Chapter 8.

## Unit -V

STABILITY OF EQUILIBRIUM AND HANGING STRINGS: Equilibrium of a uniform homogeneous string, sag, suspension bridge, examples.

## Chapter 10 \&11

* denotes self-study (Questions may be asked from these portions also)


## Book for study:

P. Duraipandian and others, Mechanics, S. Chand\& Co., 1990.

## Books for reference:

1. A. V. Dharmapadam, Statics, S. Viswanathan Printers and Publishing Pvt., Ltd,1993.
2. P. Duraipandian and Laxmi Duraipandian, Mechanics, S. Chand and Company Ltd, Ram Nagar, New Delhi -55, 1985.
3. Dr. P. P. Gupta, Statics, Kedal Nath Ram Nath, Meerut, 1983-84.

Programme : B.Sc. Mathematics
Course Title : Allied 3: Mathematical Statistics I Course Code : 20UMA3AL3
Year : Second Year Semester : III
Hours/Week : 6
Credits : 5

Course Objectives

1. To enable the students to acquire the knowledge of statistics.
2. To remember the properties of various statistical functions.
3. To understand the concepts of some statistical distributions.

Course Outcomes (CO)

| CO 1 | Remembering the concepts of probability and random variables | K 1 |
| :---: | :--- | :---: |
| CO 2 | Understanding the properties of some distributions. | K 2 |
| CO 3 | Finding mean, median, mode, moments and moment generating functions of <br> Binomial, Poisson and Normal distributions. | $\mathrm{K} 1 \& \mathrm{~K} 3$ |
| CO 4 | Analyzing how correlation is used to identify the relationships between variables <br> and how regression analysis is used to predict outcomes. | $\mathrm{K} 3 \& \mathrm{~K} 4$ |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | S | M | M | L | M | M | S | M | L |
| CO 2 | S | S | S | M | M | S | M | S | S | S |
| CO 3 | S | S | S | S | M | M | S | M | S | M |
| CO 4 | S | S | S | M | S | S | S | S | S | M |

S - Strong; M - Medium; L - Low

Unit -I
Random Variables - Mathematical Expectations-Properties of Expectation*
Chapter 2: pages 2.1 to 2.32

## Chapter 3: pages 3.1 to 3.18

## Unit -II

Variance -Moments -Moment Generating Function.
Chapter 4: pages 4.1 to 4.25
Chapter 5: pages 5.1 to 5.17

Unit -III
Correlation (Omit Bivariate sample) - Types of Correlation *-Regression
Chapter 8: pages 8.1 to 8.51
Chapter 9: pages 9.1 to 9.24
Unit -IV
Binomial Distribution - Poisson Distribution - Geometric Distribution*.
Chapter 12: pages 12.1 to 12.25
Chapter 13: pages 13.1 to 13.21
Chapter 15
Unit -V
Normal Distribution - Uniform Distribution* - Exponential Distribution* - Gamma Distribution Beta distribution.

Chapters 16,17,18,19 and 20.

* denotes self-study (Questions may be asked from these portions also)

Book for study:
P. R. Vittal, Mathematical Statistics, Margham Publications, Chennai, 2004.
(Omit all Exercise Problems)
Books for reference:

1. S. C. Gupta and V. K. Kapoor, Fundamental of Mathematical Statistics, Sultan Chand \& Sons, 2008.
2. R. S. N. Pillai and V. Bagavathi, Statistics, Sultan Chand, New Delhi, 2008.
3. S. P. Gupta, Statistical Methods, Sultan Chand, New Delhi, $33^{\text {rd }}$ Edition, 2005.
e-resources:
4. https://www.tutorialspoint.com/statistics/index.htm
5. https://nptel.ac.in/courses/111/105/111105041/
6. https://www.youtube.com/watch?v=p1Y4yJ1XnKY\&list=PLbMVogVj5nJQWowhOG0-K-yIbwRRmm3C\&index=5

Programme : B.Sc. Mathematics
Course Title : Core 7: Dynamics
Course Code : 20UMA4C07
Year : Second Year
Semester : IV
Hours/Week : 5
Credits : 4

## Course Objectives

1. To enable the students to know the laws, principles and understand the concepts of motion of a particle and projectiles.
2. To provide the knowledge about the field of kinematics and impact between spheres.
3. To gain knowledge about simple harmonic motion and central orbits.

Course Outcomes (CO)

| CO1 | Remembering the concepts of motion of a particle and projectile in different <br> angles. | K 1 |
| :--- | :--- | :---: |
| CO2 | Understanding the notions of impact between two smooth spheres in different <br> ways. | K 2 |
| CO3 | Applying the concept of simple harmonic motions in composition of two bodies <br> in different directions. | K 3 |
| CO4 | Distinguishing between the pedal equations of well-known curves and solving <br> two-fold problems in central orbits. | $\mathrm{K} 2 \& \mathrm{~K} 4$ |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | S | M | S | M | S | S | S | S | M |
| CO 2 | S | S | S | S | M | S | S | S | S | M |
| CO3 | S | S | M | S | M | S | S | M | M | S |
| CO4 | S | S | S | S | M | S | M | S | S | M |

S - Strong; M - Medium; L - Low

## Unit -I

KINEMATICS :Velocity*, resultant of $\bar{v}_{1}$ and $\bar{v}_{2}$ relative velocity acceleration, velocity and acceleration in a rectilinear motion, velocity and acceleration in a co-planar motion, angular velocity, rectilinear motion when the acceleration is constant, examples.
RECTILINEAR MOTION UNDER GRAVITY: Motion along a vertical line under gravity, line of quickest descent, motion along a smooth inclined plane, motion along a rough inclined plane, motion of connected particles, examples.

## Chapter 1: Sec 1.6 to 1.15 Chapter 3: Sec 3.1 to 3.6

Unit -II
RECTILINEAR MOTION OF A PARTICLE UNDER VARYING FORCE: Simple harmonic motion, Orthogonal projection of a uniform circular motion, composition of two simple harmonic motions of same period, motion of a heavy particle attached to one end of a horizontal spiral spring, motion of heavy particle attached to one end of a vertical spiral spring, motion under gravity in a resisting medium*, examples.

## Chapter 5: Sec 5.1 to 5.7

## Unit -III

IMPACT: Impulsive force, Impulse, conservation of linear momentum, elasticity, Impact of two smooth spheres, direct impact of two smooth spheres, Impact of smooth sphere on a fixed smooth plane, Oblique impact between two smooth spheres*, examples.
Chapter 12: Sec 12.1 to 12.9
Unit -IV
MOTION OF A PROJECTILE UNDER GRAVITY: Motion of projectile*, Nature of a projectory, Results pertaining to the motion of a projectile, maximum horizontal range and speed of a projectile, examples.

Chapter 13: Sec 13.1 to 13.4, 13.6 to 13.11

## Unit -V

CIRCULAR AND CYCLODIAL MOTIONS: Conical pendulum, circular motion in a vertical plane under gravity, simple pendulum*, cyclodial motion in a vertical plane, examples.
CENTRAL ORBITS: Central force and central orbit, equation of a central orbit, law of force and speed for given orbit, determination of the orbit when the law of force is given.

## Chapter 14: Sec 14.1 to 14.6 and Chapter 15: Sec 15.1 to 15.5 <br> * denotes self-study (Questions may be asked from these portions also)

## Book for study:

P. Duraipandian and others, Mechanics, S. Chand \& Co., 1990.

## Books for reference:

1. A. V. Dharamapadam, Dynamics, S. Viswanathan Printers and Publishers Pvt., Ltd, Chennai, 1998.
2. K. Viswanatha Naik and M. S. Kasi, Dynamics, Emerald Publishers, 1992.
3. Naryanamurthi, Dynamics, National Publishers, New Delhi, 1991.

Course Objectives

1. To solve algebraic and transcendental equations using numerical methods.
2. To solve simultaneous algebraic linear equations numerically. To know about finite differences and its uses to interpolate the values for equal and unequal intervals.

## Course Outcomes (CO)

| CO 1 | Derive numerical methods for approximating the solution of the problems of <br> algebraic and transcendental equations, ordinary differential equations. | K 1 |
| :--- | :--- | :---: |
| CO 2 | Implement a variety of numerical algorithms using appropriate technology | K2\&K3 |
| CO 3 | Get practical knowledge of polynomial interpolation, also numerical algorithms <br> are used in C++ for solving scientific problems | K 3 |
| CO 4 | Solve the ordinary differential equations by using the methods like Euler's, <br> Runge Kutta, Modified Euler and Improved Euler | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | S | L | M | M | M | S | M | S | M |
| CO 2 | S | S | S | S | M | S | S | S | S | M |
| CO3 | S | S | S | M | M | S | S | M | S | S |
| CO 4 | S | S | S | S | M | S | S | M | S | M |

S - Strong; M - Medium; L - Low

## Unit -I

THE SOLUTION OF NUMERICAL, ALGEBRAIC AND TRANSCENDENTAL EQUATIONS: Introduction - The Bisection method - Method of Successive Approximation or the Iteration method The Method of False Position- Newton's Iteration method.

## SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS: Introduction - Gauss Elimination

 method* - Computation of the inverse of a matrix using Gauss's Elimination method - Method of Triangularisation- Crout's method - Iterative methods - Comparison of Gauss Elimination and GaussSeidal Iteration methods - Relaxation methods - examples.
## Chapter - III \& IV

## Unit -II

FINITE DIFFERENCES: First Differences - Higher Differences - Backward Differences - Central difference notation - Properties of the operator $\Delta$ - Differences of a polynomial - Factorial polynomials - Relation between the operators E and $\Delta$ - Relation between the operators ( D ) and $\Delta$ - other difference operators - Relationship between the operators* - Examples.
Chapter - V

Unit -III
INTERPOLATION: Introduction - Linear Interpolation - Gregory Newton Forward Interpolation Formula - Gregory Newton Backward Interpolation Formula - Equidistant terms with one or more missing values. Central difference tables - Central Difference Interpolation Formulae - Gauss's Forward Interpolation Formula - Gauss's Backward Interpolation Formula* - Stirling's Formula - Bessel's Formula - Lagrange's Interpolation Formula - Examples.

## Chapter -VI \&VII

## Unit -IV

NUMERICAL DIFFERENTIATION AND INTEGRATION: Newton's Forward Difference Formula to compute the Derivatives - Newton's Backward Difference Formula to compute the derivatives - Derivatives using Striling's formula - The Trapezoidel Rule - Truncation error in the Trapezoidal Formula - Romberg's method - Simpson's rule - Practical Applications of the Simpson's rule* - Examples.

Chapter -IX

## Unit -V

NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS. Solutions by Taylor's series - Euler's method - Improved Euler's method - Modified Euler's method* - RungeKutta method - Second order Runge Kutta method - Higher order Runge Kutta method - Examples.
Chapter - X

* denotes self-study (Questions may be asked from these portions also)

Book for study:
Dr. M. K. Venkataraman, Numerical Methods in Science and Engineering, The National Publishing Company, Fifth Edition, 1999.

## Books for reference:

1. M. K. Jain, S. R. K. Iyengar and R. K. Jain, Numerical Methods for Scientific and Engineering Computations, New Age International publishers, New Delhi, 2004.
2. A. Singaravelu, Numerical Methods, Meenakshi Publications, Arpakkam, 2002.

## e-resources:

1. https://nptel.ac.in/courses/122/102/122102009/
2. https://nptel.ac.in/courses/111/107/111107105/
3. https://www.britannica.com/science/difference-equation
4. https://nptel.ac.in/courses/122/102/122102009/
5. https://nptel.ac.in/courses/111/107/111107063/

| Programme | $:$ | B.Sc. Mathematics |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Title | $:$ | Allied 4: Mathematical Statistics II | Course Code | $:$ | 20UMA4AL4 |
| Year | $:$ | Second Year | Semester | $:$ | IV |
| Hours/Week | $:$ | 6 | Credits | $:$ | 5 |

## Course Objectives

1. To enable the students to give inference on statistical population based on sample statistics.
2. To understand the concepts of various estimators.
3. To study the concepts of analysis of variance.

Course Outcomes (CO)

| CO 1 | Finding the derivations of $t, \chi 2$ and $F$ distributions. | K 1 |
| :--- | :--- | :---: |
| CO 2 | Explaining the procedure for testing of hypothesis and sampling of attributes. | K 2 |
| CO 3 | Applying the concepts of various distributions in real time situations. | $\mathrm{K} 2 \& \mathrm{~K} 3$ |
| CO 4 | Analyzing one - way and two - way classifications and design of experiments. | $\mathrm{K} 3 \& \mathrm{~K} 4$ |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | M | M | M | L |  | S | S | M | M | L |
| C | M | M | M |  |  |  |  |  |  |  |  |
| CO | S | S | S | S | M | S | M | S | S | M |  |
| CO | S | S | S | S | M |  | S | S | S | M | M |
| CO 4 | S | S | S | M | S |  | S | S | M | S | M |

S - Strong; M - Medium; L - Low

## Unit -I

Sampling Distribution - Chi Square, t, F - Distributions.
Chapter 22: page 22.1 to 22.40
Unit -II
Estimation - ML estimator*(Omit Cramer - Rao inequality and Rao-Blackwell Theorem).
Chapter 23: page 23.1 to 23.56
Unit -III
Large Samples -Test for specified standard deviation of the population*.
Chapter 24: page 24.1 to 24.44

Unit -IV
Small Samples - t- test Test for a specified mean*(Omit t-test for paired observation) - Small Samples - F test - One way classification*.
Chapter 25: page 25.1 to 25.39, Chapter 26: page 26.1 to 26.27

## Unit-V

Small samples - Chi square Test - Design of experiments (Omit Factorial Experiments) - Test of Hypothesis*.

Chapter 27: page 27.1 to 27.35, Chapter 28: page 28.1 to 28.17, Chapter 29: page 29.1 to 29.6

* denotes self-study (Questions may be asked from these portions also)

Book for study:
Dr. P. R. Vittal, Mathematical Statistics, Margham Publications, Chennai, 2004.
(Omit all Exercise Problems)

## Books for reference:

1. S. C. Gupta and V. K. Kapoor, Fundamental of Mathematical Statistics, Sultan Chand \& Sons, 2008.
2. B. L. Agarwal, Basic Statistics, New Age International Publishers, Chennai, 2009.
3. S. P. Gupta, Statistical Methods, Sultan Chand and Sons, New Delhi, 2011.

## e-resources:

1. https://www.tutorialspoint.com/statistics/index.htm
2. https://nptel.ac.in/courses/111/105/111105041/
3. http://www.comfsm.fm/~dleeling/statistics/text.html

| Programme | : Other than B.Sc Mathematics |  |
| :--- | :--- | :--- |
| Course Title | $:$ NME II: Quantitative methods for competitive examinations |  |
|  |  | Subject Code : 20UMA4NM2 |
| Year $:$ Second Year | Semester : IV |  |
| Hours/Week :2 |  |  |
|  |  |  |
| Course Objective |  |  |

1. To understand the number system.
2. To understand the average value and different types of roots of numbers.
3. To learn profit and loss in business.

Course Outcomes (CO)

| CO 1 | By learning HCF, LCM and decimal fractions will help the student to solve problems in <br> competitive examinations |
| :--- | :--- |
| CO 2 | By learning average of numbers, problems on ages |
| CO 3 | By learning profit and loss and ratio and proposition will help the students to solve the <br> practical problems. |

Unit - I

Numbers - HCF and LCM of numbers - Decimal fractions - simplifications
Sections: 1-4
Unit - II

Square roots and cube roots - average - problems on numbers - problems on ages - Surds and Indices
Sections: 5-9
Unit - III
Percentage - Profit and loss - ratio and proportion - partnership - chain rule - time and work
Sections: 10-15
Book for study:
R.S. Agarwal, Quantitative Aptitude (For competitive examinations), $17^{\text {th }}$ revised edition, S Chand and company ltd., Ram Nagar, New Delhi - 110055.

| Programme | $:$ | B.Sc. Mathematics |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Course Title | $:$ | Core 9 : Modern Algebra | Course Code | $:$ |
| 20UMA5C09 |  |  |  |  |
| Year | $:$ | Third Year | Semester | $:$ |
| Hours/Week | $: 5$ | Credits | $:$ | 5 |

## Course Objectives

1. To know the concepts of group theory and ring theory.
2. To understand the concepts of ideals and quotient rings.
3. To enable the concepts of Cauchy's theorem for Abelian groups, automorphisms, inner automorphism and Cayley's theorem.

## Course Outcomes (CO)

| CO1 | Finding whether a given abstract structure is a group or a ring. | K1 |
| :--- | :--- | :---: |
| CO 2 | Understanding the elementary concepts of rings and fields. | K2 |
| CO3 | Applying the concepts of homomorphism and isomorphism for comparing the <br> algebraic features of mathematical systems in groups, rings and fields | K3 |
| CO 4 | Examining the results from group theory to study the properties of rings and fields. | K4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | S | S | S | S |  | S | S | S | S | S |
| CO 2 | S | S | S | S | S |  | S | S | S | S | S |
| CO 3 | S | S | S | M | M | S | S | M | S | M |  |
| CO 4 | S | S | S | L | M |  | S | S | L | S | S |

S - Strong; M - Medium; L - Low

## Unit -I

PRELIMINARY NOTIONS: Set theory-Mappings - The Integers.
GROUP THEORY: Definition of a Group* - Some Examples of Groups-Some Preliminary Lemmas.
Chapter 1: Sections 1.1 to 1.3 and Chapter 2 : Sections 2.1 to 2.3.
Unit -II
GROUP THEORY: Subgroups* - A Counting Principle- Normal Subgroups and Quotient Groups.
Chapter 2: Sections 2.4 to 2.6.
Unit -III
GROUP THEORY: Homomorphisms - Automorphisms - Cayley's Theorem- Permutation Groups*.
Chapter 2: Sections 2.7 to 2.10.
Unit -IV

RING THEORY: Definition* and examples of rings- Some special classes of rings-Homomorphisms.
Chapter 3: Sections 3.1 to 3.3.

## Unit -V

RING THEORY: Ideals and Quotient Rings- More Ideals and Quotient Rings*- The field of Quotients of an Integral Domain.
Chapter 3: Sections 3.4 to 3.6.

* denotes self-study (Questions may be asked from these portions also)

Book for study:
I.N. Herstein, Topics in Algebra, Vani Educational Books a Division of Vikas Publishing House Pvt Ltd, New Delhi, 1984.

## Books for reference:

1. Surjeet Singh and Qazi Zameeruddin, Modern Algebra, Vikas Publishing house, 1992.
2. A. R. Vasishtha, Modern Algebra, Krishna Prakashan Mandir, Meerut, 1994-95

Course Title
Year
Hours/Week
: Core 10 : Real Analysis - I
: Third Year

## Course Objectives

1. To know about the basic notions of the real number system, set theory, relations and functions.
2. To enable to have knowledge about the basic topological properties and theorems based on point set topology.
3. To Study about the covering theorems, compactness, metric spaces and continuity of a function.

## Course Outcomes (CO)

| CO1 | Remembering the basic properties in the field of real numbers. | K1 |
| :---: | :--- | :---: |
| CO2 | Understanding the concepts of continuity, convergent sequences and metric <br> spaces. | K2 \& K3 |
| CO3 | Applying the concept of point set topology in related theorems | K3 |
| CO4 | Analyzing the compactness and to classify the continuity of a function with its <br> limits. | K4 |

K1-Remmber, K2-Understand, K3-Apply, K4-Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| CO 1 | M | S | M | S | M |  | S | M | M | M | M |
| CO 2 | S | S | S | S | S | S | S | S | S | M | M |
| CO 3 | S | S | M | S | S | S | S | S | S | L |  |
| CO 4 | S | S | S | S | S | S | S | S | S | M |  |

S- Strong, M-Medium, L- Low

## Unit-I

THE REAL AND COMPLEX NUMBER SYSTEMS: Introduction - The field and order axioms the unique factorization theorem for integers - rational and irrational numbers - upper bounds and the completeness axiom - the Archimedean property of the real number system*- the Cauchy Schwarz inequality.

## Chapter 1: Sections 1.1 to 1.19

## Unit- II

SOME BASIC NOTATIONS OF SET THEORY: Ordered pairs- relations and functions- sequencessimilar sets - finite and infinite sets - countable and uncountable sets - countable collection of countable sets*.

## Chapter 2: Sections 2.1 to 2.15.

## Unit-III

ELEMENTS OF POINT SET TOPOLOGY: Introduction - Eucliedan space $R^{n}$ - open balls and open sets in $R^{n}$ - The Structure of open sets in $R^{1}$ - closed sets - Adherent points. Accumulation points closed sets and adherent points* - the Bolzano - Weirstress theorem - the Cantor intersection theorem.
Chapter 3: Section 3.1 to 3.9.

## Unit-IV

COVERING: The Lindelofs covering theorem - the Heine - Borelcovering theorem -compactness in $R^{n}$ - metric spaces- point set topology in metric spaces - compact subsets of a metric spaces - boundary of a set*.

## Chapter 3: Section 3.10 to3.16.

## Unit-V

LIMITS AND CONTINUITY: Introduction - convergent sequence in metric spaces- Cauchy sequences - complete metric spaces - Limit of a function - continuous functions - continuity of a composite functions- examples of continuous functions - continuity and inverse images of open or closed sets - functions continuous on compact sets*.

Chapter 4: Sections 4.1 to 4.5,4.8,4.9,4.11,4.12,4.13.

* denotes self-study (Questions may be asked from these portions also)


## Book for study

Tom M. Apostal, Mathematical Analysis, Addison Wesley, 1974.

## Books for reference:

1. R. R. Goldberg, Methods of Real Analysis, NY, John Wiley, New York 1976.
2. G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw - Hill, New York, 1963.
3. G. Birkhoff and MacLane, A survey of Modern Algebra, Macmillian, New York, $3{ }^{\text {rd }}$ Edition, 1965.
4. J. N. Sharma and A. R. Vasistha, Real Analysis, Krishna Prakashan Media (P) Ltd, 1997.

Programme : B.Sc. Mathematics
Course Title : Core 11: Complex Analysis
Year : Third Year
Hours/Week : 5

| Course Code | $:$ | 20UMA5C11 |
| :--- | :--- | :--- |
| Semester | $:$ | $\mathbf{V}$ |
| Credits | $:$ | 4 |

## Course Objectives

1. To recognize complex analysis as an essential part of mathematical background.
2. To introduce the students about the complex number system.
3. To Justify the need for a complex number system and explain how it is related to other existing number systems.

## Course Outcomes (CO)

| CO 1 | Defining continuity, differentiability and analyticity of a complex valued function <br> which helps the students to acquire deeper knowledge. | K 1 |
| :--- | :--- | :---: |
| CO 2 | Showing the condition(s) for a complex valued function to be analytic and/or <br> harmonic. | K 2 |
| CO 3 | Developing the concept of sequences and series with respect to the complex <br> number system. | K 3 |
| CO 4 | Analyzing complex integration, Cauchy's integral formulae and Cauchy's <br> fundamental theorem. | K 4 |

K1-Remember; K2-Understand; K3-Apply; K4-Analyse

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | M | S | M | S | M |  | M | M | M | M | L |
| CO 2 | S | S | S | S | S |  | S | S | S | S | S |
| CO 3 | S | S | S | S | S | M |  |  |  |  |  |
| CO 4 | S | S | S | S | S |  | S | S | S | M |  |
| S | S | S | S | S | M |  |  |  |  |  |  |

S-Strong; M-Medium; L-Low

## Unit- I

ANALYTIC FUNCTIONS: Complex functions - Limit of a function - Continuity of a function Uniform Continuity - Differentiability and analyticity of a function - Necessary conditions for Differentiability - Sufficient conditions for Differentiability* - C-R equations in polar coordinates

Chapter 4: Sections: 4.1-4.8

Unit- II
ELEMENTARY AND CONFORMAL MAPPINGS: Bilinear transformation- Special bilinear transformation* - Circles and inverse points - Transformations $w=z^{2}, w=z^{\frac{1}{2}}, w=e^{z}$, Conformal mapping
Chapter 7: Sections: 7.1-7.6 \&7.8.
Unit- III

COMPLEX INTEGRATION: Simple rectifiable oriented curves - Integration of complex functions Simple integrals using definition* - Definite integrals - Interior and exterior of a closed curve -Simply-connected region - Cauchy's fundamental theorem using Goursat's lemma - Goursat's lemma (statement only) theorem 8.6 (statement only) - Integral along an arc joining two points, theorem 8.7 (statement only)- Cauchy's integral formula and formulas for derivatives, theorem 8.9, 8.10 (statements only), Morera's theorem.

## Chapter 8: Sections: 8.1-8.9.

## Unit- IV

COMPLEX INTEGRATION: Zeros of a function - Related integral theorems, theorem 8.13-8.16 only. Taylor's and Laurent's Series: Taylor's series* - Zeros of an analytic function - Laurent's series Singular point or singularity - Isolated singularities - Removable singularity - Pole - Essential singularity.

## Chapter 8: Sections: 8.10, 8.11.

## Chapter 9: Sections: 9.1-9.3, 9.5-9.9.

## Unit-V

RESIDUES: RESIDUE* - Calculation of residues - Real definite integrals (types I, II, III only)
Chapter 10: Sections: 10.1-10.3.

* denotes self-study (Questions may be asked from these portions also)

Book for study:
P. Duraipandian, Laxmi Duraipandian and D. Muhilan, Complex Analysis, M. D. Gopalakrishnan, Emerald Publishers, 2001.

## Books for references:

1. S. Narayanan and T. K. Manicavachagompillay, Complex Analysis, S. Viswanathan (Printers and Publishers), PVT. LTD, 1997.
2. J. N. Sharma, Functions of a Complex Variable, Krishna Prakasan Mandir PVT, Meerut, Twenty Third Edition, 1992-1993.
3. Churchill and Others, Complex Variable and Applications, Tata Mecgrow Hill Publishing Company Ltd, 1974.
4. Santhinarayan, Theory of functions of Complex Variable, S. Chand and Company Meerut, 1995.
5. Tyagi B.S, Functions of Complex Variable, Pragati Prakasham Publishing Company Ltd, Meerut, $17^{\text {th }}$ Edition, 1992-93.

Programme
Course Title
Year
Hours/Week
: B.Sc. Mathematics
: Core 12 - Discrete Mathematics

Course Objectives

1. To understand the concepts of discrete structures, formal languages.
2. To use finite state machines to model computer operations.
3. To genuine use in computer science and elsewhere are identified and combined together in a logically coherent fashion

## Course Outcomes (CO)

| CO 1 | Acquire knowledge about the basic concepts of Discrete Mathematics and its <br> applications | K1 |
| :--- | :--- | :---: |
| CO 2 | Apply logically valid forms of arguments to avoid logical errors by studying <br> mathematical logic | K 2 |
| CO 3 | Understand abstract algebra, posets, lattices, Boolean algebra and their applications <br> in the field of engineering and computer science. | K 3 |
| CO 4 | Define the basic definitions of graph theory and a knowledge about types of graphs <br> including isomorphic graphs, homeomorphic graphs, Eulerian graphs and <br> Hamiltonian graphs | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO 1 | PO 2 | PO3 | PO 4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | M | M | M | L |  | M | M | S | M | S |
| CO 2 | S | S | M | S | M | M |  |  |  |  |  |
| CO 3 | S | S | S | S | M | S | S | S | S | M |  |
| CO 4 | S | S | S | S | M |  | S | M | S | S |  |
|  | S | S | M | S | M |  |  |  |  |  |  |

S - Strong; M - Medium; L - Low
Unit - I
MATHEMATICAL LOGIC: Statements - Truth tables - Connectives - Normal forms*.
Chapter 1: Sections 1.2.1 to 1.2.4, 1.2.6 to 1.2.11, 1.3.1 to 1.3.5.
Unit -II
MATHEMATICAL LOGIC: Predicate Calculus - Inference theory of Predicate Calculus.
Chapter 1: Sections 1.4 .1 to 1.4.3, 1.5 .1 to 1.5.5, 1.6.4, 1.6.5.

Unit -III
GRAMMAR AND AUTOMATA: Grammar and languages - Finite state acceptors and regular grammar*.

## Chapter 3: Sections 3.1, 3.3.2, Chapter 6: Sections 6.1, 6.2.

Unit -IV
LATTICE THEORY: Partial ordering - Posets - Hasse diagram - Lattices - Properties of Lattices Boolean Algebra - Boolean Functions* - Minimization.

Chapter 4: Sections 4.1.1, 4.1.2, 4.2-4.4
Unit -V
GRAPH THEORY: Introduction to Graphs - Matrix Representation of Graphs - Paths, Reachability, and Connectivity - Euler and Hamiltonian paths*, Trees.
Chapter 5: Sections 5.1.1 to 5.1.4.

* denotes self-study (Questions may be asked from these portions also)

Book for study:
J. P. Tremblay and R. Manohar, Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw Hill Book Edition, 1997.

## Book for reference:

V. Sunderesan, K. S. Ganapathy Subramanian and K. Ganesan, Discrete Mathematics, A.R publications.

## e-resources:

1. https://nptel.ac.in/courses/106/106/106106094/
2. https://nptel.ac.in/courses/111/107/111107058/
: Third Year
Hours/Week : 5

Semester : V
Credits : 4

## Course Objectives

1. To introduce certain OR techniques such as LPP, transportation and assignment problems.
2. To help the students to develop logical reasoning.
3. To apply mathematical tools to managerial and real life problems.

## Course Outcomes (CO)

| CO1 | Remembering the concept of linear programming problem using Simplex Method. | K1 |
| :---: | :--- | :---: |
| CO2 | Applying the notions of linear programming in solving transportation problems <br> and assignment Problem. | K3 |
| CO3 | Understanding the rules for sequencing problems. | K2 |
| CO4 | Analyzing the concepts of dynamic programming. | K4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | M | S | M | S |  | M | S | M | S | M |
| CO 2 | S | L | S | S | M |  | S | S | S | M | M |
| CO 3 | S | S | S | L | M | S | S | S | M | S | S |
| CO 4 | M | S | S | S | S |  | S | L | M | S | M |

S - Strong; M - Medium; L - Low

## Unit -I

THE LINEAR PROGRAMMING PROBLEM: Introduction - Mathematical Formulation of the Problem - Graphical Solution Method - Some Exceptional Cases - General Linear Programming Problem - Standard Form of LPP - Some important definitions.
THE SIMPLEX METHOD: Introduction - The Computational procedure - Use of Artificial variables - Two Phase Method - Big-M Method*.

## Chapter 2 and Chapter 3.

## Unit-II

DUALITY IN LINEAR PROGRAMMING: Introduction - General Primal-Dual pair - Formulating a Dual Problem - Duality and Simplex Method - Economic Interpretation of Dual - Dual Simplex Method.

INTEGER PROGRAMMING: Introduction - Gomory's all LPP Method - Construction of Gomory's Constraints - Gomory's Fractional Cut Method - Geometrical Interpretation of the Cutting Plane*.
Chapter 4 and Chapter 5.
Unit-III
THE TRANSPORTATION PROBLEM: Introduction - General Structure of the Problem - Basic Feasibile Solution of a Transportation problem - The Transportation Tables - Loops in Transportation Tables - Solution of a Transportation problem - Finding Initial Basic Feasible Solution* - Moving Towards Optimality - The Transportation Algorithm - Some exceptional cases.

## Chapter 6.

## Unit-IV

THE ASSIGNMENT PROBLEMS: The Assignment Problems - Mathematical Statement of the Problem - Method for Solving an Assignment Problem - Variations of the Assignment Problem Travelling Salesman Problem*.

## Chapter 7.

## Unit-V

SEQUENCING PROBLEMS: Introduction - Problem of Sequencing - Terminology, Notations and Assumptions - Problems with n Jobs and two Machines - Problems with n Jobs and three Machines Problems with $n$ Jobs and $m$ Machines - Problems with two Jobs and m Machines*.

DYNAMIC PROGRAMMING: Introduction - Characteristics of Dynamic Programming - The Recursive Equation Approach - The Computational Procedure - An Application in Production - Solution of an L.P.P. by Dynamic Programming.
Chapter 8 and Chapter 9.

* denotes self-study (Questions may be asked from these portions also)


## Book for study:

Kanti Swarup, P.K. Gupta and Man Mohan, Introduction to Operations Research, Sultan Chand and Sons, Third Edition, 1997.

## Books for reference:

1. Prem Kumar Gupta and D.S.Hira, Problems in Operations Research, Chand and Company, New Delhi, 1998.
2. B.S. Goel and S.K. Mittal, Operations Research, $16^{\text {th }}$ Edition, Pragathi Prakashan, Publishers, Meerut,1999.

## e-resources:

1. https://www.youtube.com/watch?v=xrGVe6gMRyk
2. https://www.youtube.com/watch?v=ItOuvM2KmD4
3. https://www.youtube.com/watch?v=rrfFTdO2Z7I

## Programme : B.Sc. Mathematics

| Course Title | $:$ | Core 14-Linear Algebra | Course Code | $:$ |
| :--- | :--- | :--- | :--- | :--- |
| Year | $:$ | Third Year | Semester | $:$ |
| VI |  |  |  |  |
| Hours/Week | $:$ | 5 | Credits | $:$ |

## Course Objectives

1. To know the concepts of Hermitian and Skew-Hermitian, orthogonal and unitary matrices, characteristic roots and characteristic vectors of a square matrix.
2. To enable the concepts of linear independence, basis and dimension of a vector spaces.
3. To understand the concept of linear transformation and matrices which will enrich the knowledge of logical thinking.

## Course Outcomes (CO)

| CO1 | Recalling the basic concepts of matrices, rank of a matrix. | K 1 |
| :--- | :--- | :---: |
| CO 2 | Understanding the basic ideas of vector spaces and the concepts of linear span, <br> linear independence, basis, dimension. | K 2 |
| CO 3 | Applying the principles of matrix algebra to linear transformations. | K 3 |
| CO 4 | Examining whether the given set of vectors is linearly dependent or independent. | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | S | S | S | S | S | S | S | S | S |
| CO2 | S | S | S | M | L | S | S | $S$ | M | S |
| CO3 | S | S | M | S | S | S | S | S | S | L |
| CO4 | S | S | S | S | S | S | M | S | S | S |

S - Strong; M - Medium; L - Low

## Unit -I

MATRICES: Algebraic operations - Triangular, Diagonal, Scalar, Unit matrices - Transpose*, adjoint and inverse of a square matrix - Symmetric and Skew Symmetric matrix.

## Chapter 1: Sections 1.1 to 1.7.

## Unit-II

Hermition and Skew Hermition Matrices-Orthogonal and Unitary Matrices:
Rank of a matrix* - Eigen values and Eigen Vectors of linear operators - Solutions of Homogeneous linear equations, Solutions of non-homogeneous linear equations. Characteristic roots and Characteristic vectors of a square matrix

## Chapter 1: Sections 1.8-1.9, Chapter 2: Section 2.9, Chapter 3: Sections 3.6 to3.9.

Unit -III
VECTOR SPACES: Elementary basic concepts, linear Independence and bases*.

## Chapter 4: Sections 4.1 to 4.2.

## Unit -IV

Dual spaces - Inner product spaces

## Chapter 4: Sections 4.3 and 4.4.

Unit-V
LINEAR TRANSFORMATIONS: Algebra of linear transformations - Characteristic roots* ${ }^{*}$ Matrices.

## Chapter 6: Sections 6.1 to 6.3.

* denotes self-study (Questions may be asked from these portions also)


## Books for study:

1. R. Balakrishnan and N. Ramabhadran, A Text Book of Modern Algebra by Vikas Publishing House Pvt Ltd, New Delhi, 1979.
(For Units I and II)
2. I. N. Herstein, Topics in Algebra, Vani Educational Books a Division of Vikas Publishing House Pvt Ltd, New Delhi, 1984.
(For Units III, IV and V)

## Books for references:

1. Schaum's Outline series, Linear Algebra, McGraw Hill Book Company, New Delhi.
2. Dr. S. N. Goel, Linear Algebra, Kadar Nath, Ram Nath, Meerut, $4^{\text {th }}$ Edition.

Programme : B.Sc. Mathematics
Course Title : Core 15-Real Analysis II
Year : Third Year
Course Code : 20UMA6C15
Hours/Week : 5
Semester : VI

Course Objectives

1. To understand the concept of functions, Connectedness, uniform continuity, fixed point and related theorems.
2. To find the derivatives and functions of bounded variations.
3. To know about the Reimann- Stieltjes integrals and its properties.

## Course Outcomes (CO)

| CO 1 | Remembering the concept of derivatives, bounded variations. | K 1 |
| :--- | :--- | :--- |
| CO 2 | Understanding the concept of connectedness. | K 2 |
| CO 3 | Applying the differentiability of real functions. | K 3 |
| CO 4 | Analyzing the Riemann integrals to a finite sum. | K 4 |

K1-Remember, K2-understand, K3-Apply, K4-Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | M | S | M | S | M |  | S | S | M | M | M |
| CO 2 | S | S | S | S | M | M |  |  |  |  |  |
| CO | S | S | M | S | M |  |  |  |  |  |  |
| CO | S | S | S | S | S |  | S | S | S | S | M |
| CO 4 | S | S | S | S | S |  | S | S | S | S | L |

S- Strong, M- Medium, L- Low

## Unit-I

Topological mappings (homeomorphisms)- Bolzano's theorem- connectedness- components of a metric space - uniform continuity and compact sets - fixed point theorem for contractions - discontinuities of real valued functions*- monotonic functions.
Chapter 4 : Sections 4.14 to 4.17, 4.19 - 4.23.

## Unit- II

DERIVATIVES: Introduction - definition of derivative - derivatives and continuity - algebra of derivatives - algebras of derivatives - the chain rule - Rolle 's theorem - the mean value theorem for derivatives - intermediate- value theorem for derivatives - Taylor's formula with remainder - derivatives of vector - valued functions - partial derivatives*.

## Chapter 5: Section 5.1 to 5.5, 5.9-5.14.

## Unit-III

FUNCTIONS OF BOUNDED VARIATION: Introduction - properties of monotonic functions* -

Function of bounded variation - Total Variation - Additive property of total variation - Total variation on $[a, x]$ as a function of $x$ - Functions of bounded variation expressed as the difference of increasing functions - continuous functions of bounded variation.

## Chapter 6: Sections 6.1 to 6.8

## Unit-IV

THE RIEMANN-Stieltjes Integral: Introduction -Notation*- The definition of the Riemann Steiltjes integral- Linear properties - Integration by parts - change of variables in a Riemann Stieltjes integralReduction to a Reimann integral - Step function as integrators.

## Chapter 7: Section 7.1 to 7.8.

## Unit-V

Reduction of a Reimann Steiltjes integral to a finite sum - Eulers summation formula - monotonically increasing integration, Upper and lower integrals- Additive and linearity properties of upper and lower integrals* - Reimann condition.

## Chapter 7: Section 7.9 to 7.13.

* denotes self-study (Questions may be asked from these portions also)


## Book for study:

Tom M. Apostal, Mathematical Analysis, Addison Wesley, 1974.

## Books for reference:

1. R.R. Goldberg, Methods of Real Analysis, NY, John Wiley, New York 1976.
2. G.F. Simmons, Introduction to Topology and Modern Analysis, McGraw - Hill, New York, 1963.
3. G. Birkhoff and MacLane, A survey of Modern Algebra, Macmillian, New York, $3^{\text {rd }}$ Edition, 1965.
4. J. N. Sharma and A. R. Vasistha, Real Analysis, Krishna Prakashan Media (P) Ltd, 1997.

| Programme | $:$ | B.Sc. Mathematics |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Course Title | $:$ | Core 16-Special Functions | Course Code | : 20UMA6C16 |
| Year | $:$ | Third Year | Semester | $:$ |
| Hours/Week | $:$ | 4 | Credits | $:$ |

## Course Objectives

1. To introduce certain types of special functions.
2. To help the students to simplify hyper geometric functions.
3. To apply mathematical tools to solve Chebyshev's polynomials.

## Course Outcomes (CO)

| CO1 | Remembering the concept of special functions. | K1 |
| :--- | :--- | :---: |
| CO 2 | Understanding the applications of hyper geometric functions. | K 2 |
| CO 3 | Using the solution of Bessel's equation in solving science and engineering problems. | K3 |
| CO 4 | Analyzing the use of Hermite's polynomial. | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | S | M | S | M | S | S | S | S | M |
| CO 2 | S | S | M | S | M | S | S | S | S | M |
| CO 3 | S | S | M | S | S | S | S | M | S | S |
| CO 4 | S | S | M | S | S | S | S | M | S | M |

S - Strong; M - Medium; L - Low

## Unit -I

SPHERICAL HARMONICS: Spherical Harmonics, Kelvin's theorem, Legendre's equation from Laplace equations, Bessel's equation from Laplace equations.

Legendre's equation: Legendre's equation, Solution of Legendre's equation, Definition of $P_{n}(x)$ and $Q_{n}(x)$, To show that $P_{n}(x)$ is the coefficient of $h^{n}$ in the expansion of $\left(1-2 x h+h^{2}\right)^{-1 / 2}$, Laplace Definite integral for $P_{n}(x)$, Orthogonal properties of Legendre's Polynomials*, Recurrence formulae.
Chapter 1: Sec: 1.1-1.4 and Chapter 2: Sec: 2.1 - 2.8, Examples: Pg. No:20-26

## Unit -II

HYPER GEOMETRIC FUNCTIONS: Hypergeometric functions, Gauss's hypergeometric equation, The hyper geometric series, Particular cases of hypergeometric series, Different forms of hypergeometric function, Solution of hypergeometric equation, Linear relations between the solution of hypergeometric equation, Symmetric property of hypergeometric function, Integral formula for the hypergeometric function, Kummer's Theorem, Gauss's Theorem, Vandermonde's Theorem, Differentiation of
hypergeometric function*.

## Chapter 4: Sec: 4.1-4.13

Examples: Pg. No:91-95
Unit -III
BESSEL'S EQUATION: Bessel's equation, Solutions of Bessel's general differential equation , General solution of Bessel's equation, Integration of Bessel's equation in series for $\mathrm{n}=0$, Definition of Bessel's Equation for series for $\mathrm{n}=0$, Definition of $J_{n}(x)$, Recurrence formula for $J_{n}(\boldsymbol{x})^{*}$.
Chapter 5: Sec: 5.1-5.6.
Examples: Pg. No:107-113

## Unit -IV

HERMITE POLYNOMIALs: Hermite's Differential equation, Solution of Hermite's equation, Hermite polynomials, Generating functions, Other forms for the Hermitepolynimals, To find the first few Hermite polynomials, Orthogonal properties of Hemite polynomials, Recurrence formulae for Hermite polynomials*.

## Chapter 6 : Sec 6.1-6.8

Examples: Pg. No:145-149

## Unit -V

CHEBYSHEV Polynomials: Chebyshev's Differential equation, Chebyshev polynomial, To prove that $T_{n}(x)$ and $U_{n}(x)$ are independent solutions of Chebyshev's equation, Relations for $T_{n}(x)$ and $U_{n}(x)$, To find first few Chebyshev polynomials, Generating Functions, Orthogonal properties of Chebyshev polynomials, Recurrence for $\boldsymbol{T}_{\boldsymbol{n}}(\boldsymbol{x})$ and $\boldsymbol{U}_{\boldsymbol{n}}(\boldsymbol{x})^{*}$.
Chapter 8: Sec: 8.1-8.8.
Examples: Pg. No:180-182

* denotes self-study (Questions may be asked from these portions also)


## Books for Study:

J. N. Sharma, R. K. Gupta, Mathematical Methods (Part I), Krishna Prakashan Mandir, Edition 1990-91.

## Book for reference:

J. N. Sharma and R. K. Gupta, Special Functions, Krishna Prakashan Mandir, Fifteenth edition, 1992.

Programme : B.Sc. Mathematics
Course Title : Core 17: Operations Research II Course Code : 20UMA6C17
Year : Third Year
Hours/Week : 5

Semester : VI
Credits : 4

## Course Objectives

1. To understand the mathematical tools that are needed to solve game and queueing theory problems.
2. Knowing the concept of inventory and replacement problems.
3. Understanding the difference between PERT and CPM.

## Course Outcomes (CO)

| CO1 | Applying the maximin and minimax principles in game theory. | K1 |
| :--- | :--- | :--- |
| CO2 | Analyzing the classifications of queueing models. | K4 |
| CO3 | Applying the concept of inventory control and replacement techniques in business. | K2 |
| CO4 | Examining the concept of traffic intensity in real life problems. | K3 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | M | S | S | M | M | M | S | S | M |
| CO 2 | S | L | S | M | M | S | S | M | S | M |
| CO 3 | M | S | S | S | M | S | M | S | M | S |
| CO 4 | S | S | S | S | M | S | S | M | S | M |

S - Strong; M - Medium; L - Low

## Unit -I

GAME THEORY: Introduction - Two-person Zero-Sum Games - The MaxiMin - MiniMax Principle - Games Without Saddle Points- Mixed Strategies - Graphical Solution of $2 \times n$ and $m \times 2$ Games Dominance Property* - Reducing the Game Problem to an LPP - A short-cut method for $n \times n$ Games.

## Chapter 10

Unit -II
QUEUEING THEORY: Introduction - Queueing Systems - Characteristics of the Queueing Systems - Operating Characteristics of a Queueing System - Poisson Process and Exponential Distribution Definition of Transient and Steady States - Classification of Queues - Poisson Queues*.

## Chapter 11 (Omit Sec 11.9)

Unit -III
INVENTORY PROBLEMS: Introduction - Inventory Control - Costs Associated with Inventories Economic Lot Size Problems - Problems of EOQ with Shortage Allowed - Purchase Inventory Problem with Price Breaks - Multi-item Deterministic Problem - Buffer Stock or Safety Stock - Re-Order Level*

## Chapter 12 (Omit Sec 12.10)

Unit -IV
REPLACEMENT PROBLEM: Introduction - Replacement of items that deteriorate with time Replacement of Items that fail completely*

## Chapter 13

Unit - V
NETWORK SCHEDULING BY PERT/CPM: Introduction - Basic Concepts - Construction of the Network - Critical Path Analysis* - Statistical Considerations in PERT - Cost Considerations in PERT/CPM

## Chapter 14

* denotes self-study (Questions may be asked from these portions also)


## Book for study:

Kanti Swarup, P. K. Gupta and Man Mohan, Introduction to Operations Research, Sultan Chand and Sons, Third Edition, 1997.

## Book for reference:

V. Sundaresan, K. S. Ganapathy Subramanian and K. Ganesan, Resource Management Techniques, A.R. Publications, Second Edition, 2004.

## e-resources:

1. https://www.youtube.com/watch?v=xGkpXk-AnWU
2. https://www.youtube.com/watch?v=fW5VYQqcSpY
3. https://www.youtube.com/watch?v=vUMGvpsb8dc

Programme : B.Sc. Mathematics
Course Title : Core 18: Number Theory
Year : Third Year
Hours/Week : 5

| Course Code | $:$ | 20UMA6C18 |
| :--- | :--- | :--- |
| Semester | $:$ | VI |
| Credits | $:$ | 4 |

## Course Objectives

1. To impart knowledge in the basic concepts of number theory, fundamental definitions, theorems.
2. To learn congruence, arithmetic function and its properties.
3. To solve challenging problems in number theory.

Course Outcomes(CO)

| CO1 | Recall the theory of integers from a list of axioms. | K1 |
| :--- | :--- | :---: |
| CO2 | Classify the problems to solve using the learned principles and theorem. | K2\&K3 |
| CO3 | Explaining various divisibility tests and apply them in real life problems. | K4 |
| CO4 | Apply number theory algorithms and procedures to basic problems in mathematics. | K3 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | M | M | M | L |  | M | S | M | S | M |
| CO 2 | S | S | S | M | M |  | S | S | S | S | M |
| CO 3 | S | S | S | S | M |  | S | S | M | S | S |
| CO 4 | S | S | S | S | M |  | S | S | M | S | M |

S - Strong; M - Medium; L - Low
Unit -I
INTRODUCTION - Divisibility- Division Algorithm-Euclidean Algorithm- Primes

## Chapter 1: 1.1-1.3

## Unit-II

CONGRUENCES: Congruences- Solution of Congruences- The Chinese remainder theorem- Prime Power Moduli- Prime Modulus.

Chapter 2: 2.1-2.3 \& 2.6-2.7
Unit-III
QUADRATIC RECIPROCITY AND QUADRIC FORMS: Quadratic Residue- Quadratic
Reciprocity- The Jacobi Symbol - Binary Quadric Forms.

## Chapter 3: 3.1-3.4

## Unit-IV

SOME FUNCTIONS OF NUMBER THEORY: Greatest integer function -Arithmetic function- The Mobius inversion formula- Recurrence functions.

## Chapter 4 : 4.1-4.4

## Unit- V

SOME DIOPHANTINE EQUATIONS: The equation $\mathrm{ax}+\mathrm{by}=\mathrm{c}-$ Simultaneous EquationsPythagorean Triangles- Assorted Examples

## Chapter 5 : 5.1-5.4

## Book for study:

A. Ivan Niven, S. Herbert, Zuckerman, Hugh and L. Montgomerry, An Introduction to The Theory of Numbers, Wiley, Fifth Edition, Reprint-2013.

## Books for reference:

1. T. M. Apostol, Introduction to Analytic Number theory, Springer Verlag, 1976.
2. Kennath and Rosan, Elementary Number Theory and its Applications, Addison Wesely Publishing Company,1968.

## e-resources:

1. https://freevideolectures.com/course/3027/cryptography-and-network-security
2. https://www.youtube.com/watch?v=SCvtxjpVQms\&t=3321s
3. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{Oyw5OmOd} 9 \mathrm{~B} 8$

| Programme | $:$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Course Title | $:$ | NME 1:Business Mathematics | Course Code | $:$ |
| 20UCO3NM1 |  |  |  |  |
| Year | $:$ | Second Year | Semester | $:$ |
| Hours/Week | $:$ | 2 | Credits | $:$ |

## Course Objectives:

1. To understand the concept of simple and compound interest rate.
2. To use matrices and their properties in business finance
3. To learn quantitative analysis by Linear Programming Problem (LPP)

## Course Outcomes (CO):

| CO 1 | Practice on various types of interest rate in business organization. | K1\& K3 |
| :---: | :--- | :---: |
| CO 2 | Apply and calculate matrix in business. | K 2 |
| CO 3 | Mathematical calculations of maximization and minimization of profit through <br> LPP. | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 | PO1 | PO2 | PO3 | PO4 | PO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | S | M | S | M | S | S | S | S | M |
| CO 2 | M | M | L | S | M | M | S | M | S | M |
| CO3 | M | S | S | S | S | S | S | M | S | M |

## Unit-I

MATHEMATICS OF FINANCE: Basic concept - Simple interest - formulae and problem - Compound interest - formulae and problems - Effective rate and Normal rate of Interest - Depreciation.

Page No.: 43-65

## Unit-II

MATRIX: Definition of Matrix - Importance - Notation - order of a Matrix - types of matrices matrix operations - I - Addition - Subtraction - Scalar Multiplication - multiplication - transpose Properties.

Page No.: 147-162

## Unit-III

LINEAR PROGRAMMING: Introduction to OR - Meaning and Scope of operations Research Limitations of OR - Linear Programme - Formulation of LLP - Graphical Method.
Page No.: 328-343
Book for study: P. Navintham, Business Mathematics \& Statistics, Jai Publishers, 2012.

## Programme : B.Sc. Physics

Course Title : Allied 1: Mathematics I Course Code : 20UPH1AL1
Year : First Year
Hours/Week : 6
Semester : I
Credits : 5

## Course Objective

1. To provide the basic knowledge of sequences, series and nature of the roots of theory of equations.
2. To provide the basic knowledge of trigonometry and matrices.
3. To give basic knowledge about mathematical concepts in calculus.

## Course Outcomes (CO)

| CO 1 | Knowing the relation between the coefficients and the roots of an algebraic <br> equation. | $\mathrm{K} 1 \& \mathrm{~K} 2$ |
| :---: | :--- | :---: |
| CO 2 | Understanding the characteristic equation for finding eigenvalues and <br> eigenvectors. | K 2 |
| CO 3 | Knowing the expansion of trigonometric functions and hyperbolic functions. | K 2 |
| CO 4 | Applying finite difference methods for interpolation. | $\mathrm{K} 3 \& \mathrm{~K} 4$ |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | M | S | M | M |  | S | S | L | M | M |
| CO 2 | M | S | S | S | M | S | M | M | L | M |  |
| CO 3 | S | S | S | S | M |  | S | S | M | S | M |
| CO 4 | S | M | S | M | M | S | S | M | M | M |  |

S - Strong; M - Medium; L - Low

## Unit -I

ALGEBRA: Statement of Binomial, Exponential and Logarithmic series - Approximation and limit expression obtained by Binomial, Exponential and Logarithmic series.
(Chapter 1: Section: 1.2, 1.3, 1.4 Omit summation problems)
THEORY OF EQUATIONS: Nature of Roots* - Relation between the coefficients and the roots of an algebraic equation - Newton's and Horner's method.
Chapter 2: Section: 2.1, 2.2, 2.6, 2.7

## Unit -II

MATRICES: Rank of a matrix* - Simultaneous linear equations - Eigen values and Eigen vectors -Cayley-Hamilton Theorem (without proof) and its applications.

## Chapter 3: Section: 3.2-3.5

## Unit -III

FINITE DIFFERENCES: Interpolation - Binomial method - Lagrange's interpolation.
Chapter 4: Section: 4.1-4.3 (Omit excises)

## Unit -IV

TRIGNOMETRY: Expansions of $\operatorname{Cos} n \theta, \operatorname{Sin} n \theta$ and $\tan n \theta-E x p a n s i o n ~ o f ~ \operatorname{Sin} \theta$ and $\operatorname{Cos} \theta$ in a series of ascending powers of $\theta$ - Hyperbolic functions - Relation between Hyperbolic functions*- Inverse Hyperbolic functions - Real and Imaginary parts - Logarithm of complex numbers.

## Chapter 5: Sections 5.1, 5.3 to 5.5

Unit -V
DIFFERENTIAL CALCULUS: Curvature - Circle, radius and center curvature - Coordinates of center of Curvature*- Evolute and involute - Radius of Curvature when the curve is given in polar coordinates - p-r Equation of the curve

## Chapter 6: Section: 6.4

* denotes self-study (Questions may be asked from these portions also)


## Book for Study:

S. Narayanan, R. Hanumantha Rao, Manickavachagam Pillai and P. Kandaswamy, Ancillary Mathematics (Volume I), S.Viswanathan (Printers \& Publishers) Pvt Ltd., 2007.

## Books for reference

1. G. C. Sharma and Madhu Jain, Algebra and Trigonometry, Galgotia Publications Pvt. Ltd., $1^{\text {st }}$ Edition, 2003.
2. Dr. J. K. Goyal and G. P. Gupta, Laplace and Fourier Transforms, Pragati Prakashan, Meerut, $16^{\text {th }}$ Edition, 2003.

| Programme | $:$ | B.Sc. Physics. |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Course Title | $:$ | Allied 1: Mathematics - II | Course Code | $:$ | 20UPH2AL2 |
| Year | $:$ | First Year | Semester | $:$ | II |
| Hours/Week | $:$ | 6 |  | Credits | $:$ |

## Course Objective

1. To give basic knowledge for evaluating double and triple integrals.
2. To understand Laplace and inverse Laplace transforms.
3. To get the ability of solving ordinary and partial differential equations.

Course Outcomes (CO)

| CO 1 | Remembering the formulas in differentiation and integration. | K1 |
| :--- | :--- | :---: |
| CO 2 | Illustrating the Fourier co-efficient for periodic functions. | K1\&K2 |
| CO 3 | Knowing different integrals of partial differential equations. | K2 |
| CO 4 | Analyzing the differential operator for finding gradient, divergence and curl | K3\&K4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | L | S | S | S |  | S | S | S | L | M |
| CO 2 | S | M | S | S | M |  | M | S | M | M | M |
| CO 3 | S | M | S | S | M | S | S | S | S | L | M |
| CO 4 | S | M | S | S | M |  | S | S | M | M | M |

S - Strong; M - Medium; L - Low

## Unit -I

INTEGRATION: Reduction formula
(Chapter 1: Section: 13)
FOURIER SERIES: Fourier series - Even and Odd functions* - Half range Fourier series Development in cosine series - Development in sine series.

Chapter 2: Section: 1 - 5

## Unit -II

ORDINARY DIFFERENTIAL EQUATIONS: Variable separable- Homogenous equations - NonHomogenous equations - Linear equations* - Bernoulli's equations - First order higher degree equations.

## Chapter 4: Omit Sections 6.1-6.4

## Unit -III

PARTIAL DIFFERENTIAL EQUATIONS: Derivation of Partial differential equations- Eliminations of arbitrary constants / functions - Different integrals of partial differential equations - Four standard types of first order equations* - Lagrange's equations

## Chapter 6: Section: 1-3, 5, 6

Unit -IV
LAPLACE TRANSFORMS: Definition - Laplace transforms of standard functions - Inverse Laplace Transforms* - Applications to solve ordinary differential equations and simultaneous equations

## Chapter 7

Unit -V
VECTOR ANALYSIS: Vector differentiation* - Gradient of a scalar point function - Divergence and Curl - Formula connecting Divergence and Curl - Vector integration - Line integral - Volume integral - Surface integral - Statement of Stoke's and Gauss theorem - Simple applications.

Chapter 8: Sections: 1.11, 1.12, 1.17 to 1.20, 2, 4, 5, 6, 9

* denotes self-study (Questions may be asked from these portions also)


## Book for Study:

S. Narayanan, R. Hanumantha Rao, Manickavachagam Pillai and P. Kandaswamy, Ancillary Mathematics (Volume II), S. Viswanathan (Printers \& Publishers) Pvt Ltd., 2007.

## Books for reference

1. Shanti Narayan, Differential Calculus, Shyamlal Charitable Trust, New Delhi, 2004.
2. B. M. Aggarwal, Integral Calculus, Satya Prakashan Publishers, New Delhi, $1^{\text {st }}$ Edition, 1992.
3. P. N. Chatterji, Vector Calculus, Rajhans Prakahan Publishers, Chennai, $1^{\text {st }}$ Edition, 1998.

Programme : B.Sc. Chemistry
Course Title : Allied 1: Mathematics I
Course Code : 20UCH1AL1
Year : First Year
Hours/Week : 6
Semester
: I
Credits : 5

## Course Objective

1. To provide the basic knowledge of sequences, series and nature of the roots of theory of equations.
2. To provide the basic knowledge of trigonometry and matrices.
3. To give basic knowledge about mathematical concepts in calculus.

## Course Outcomes (CO)

| CO1 | Knowing the relation between the coefficients and the roots of an algebraic <br> equation. | K1 \& K2 |
| :--- | :--- | :---: |
| CO 2 | Understanding the characteristic equation for finding eigenvalues and <br> eigenvectors. | K 2 |
| CO 3 | Knowing the expansion of trigonometric functions and hyperbolic functions. | K 2 |
| CO 4 | Applying finite difference methods for interpolation. | $\mathrm{K} 3 \& \mathrm{~K} 4$ |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | M | S | M | M |  | M | S | S | M | S |
| CO 2 | M | S | S | S | M |  | M | S | M | M | S |
| CO 3 | S | S | S | S | M |  | M | S | M | L | M |
| CO 4 | S | M | S | M | M |  | M | M | M | M | S |

S - Strong; M - Medium; L - Low
Unit -I
ALGEBRA: Statement of Binomial, Exponential and Logarithmic series - Approximation and limit expression obtained by Binomial, Exponential and Logarithmic series.
(Chapter 1: Section: 1.2, 1.3, 1.4 Omit summation problems)
THEORY OF EQUATIONS: Nature of Roots* - Relation between the coefficients and the roots of an algebraic equation - Newton's and Horner's method.
Chapter 2: Section: 2.1, 2.2, 2.6, 2.7

## Unit -II

MATRICES: Rank of a matrix* - Simultaneous linear equations - Eigen values and Eigen vectors -Cayley-Hamilton Theorem (without proof) and its applications.
Chapter 3: Section: 3.2-3.5
Unit -III

FINITE DIFFERENCES: Interpolation - Binomial method - Lagrange's interpolation.
Chapter 4: Section: 4.1-4.3 (Omit excises)

## Unit -IV

TRIGONOMETRY: Expansions of $\operatorname{Cos} n \theta, \operatorname{Sin} n \theta$ and $\tan n \theta-$ Expansion of $\operatorname{Sin} \theta$ and $\operatorname{Cos} \theta$ in a series of ascending powers of $\theta$ - Hyperbolic functions - Relation between Hyperbolic functions*- Inverse Hyperbolic functions - Real and Imaginary parts - Logarithm of complex numbers.

## Chapter 5: Sections 5.1, 5.3 to 5.5

Unit - V
DIFFERENTIAL CALCULUS: Curvature - Circle, radius and center curvature - Coordinates of center of Curvature*- Evolute and involute - Radius of Curvature when the curve is given in polar coordinates - p-r Equation of the curve

## Chapter 6: Section: 6.4

* denotes self-study (Questions may be asked from these portions also)


## Book for Study:

S. Narayanan, R. Hanumantha Rao, Manickavachagam Pillai and P. Kandaswamy, Ancillary Mathematics (Volume I), S. Viswanathan (Printers \& Publishers) Pvt Ltd., 2007.

## Books for reference

1. G. C. Sharma and Madhu Jain, Algebra and Trigonometry, Galgotia Publications Pvt. Ltd., $1^{\text {st }}$ Edition, 2003.
2. Dr. J. K. Goyal and G. P. Gupta, Laplace and Fourier Transforms, Pragati Prakashan, Meerut, $16^{\text {th }}$ Edition, 2003.

| Programme | $:$ | B.Sc. Chemistry. |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Course Title | $:$ | Allied 1: Mathematics - II | Course Code | $:$ |
| 20UCH2AL2 |  |  |  |  |
| Year | $:$ | First Year | Semester | $:$ |
| Hours/Week | $:$ | 6 | Credits | $:$ |

## Course Objective

1. To give basic knowledge for evaluating double and triple integrals.
2. To understand Laplace and inverse Laplace transforms.
3. To get the ability of solving ordinary and partial differential equations.

Course Outcomes (CO)

| CO 1 | Remembering the formulas in differentiation and integration. | K 1 |
| :--- | :--- | :---: |
| CO 2 | Illustrating the Fourier co-efficient for periodic functions. | K1\&K2 |
| CO 3 | Knowing different integrals of partial differential equations. | K2 |
| CO 4 | Analyzing the differential operator for finding gradient, divergence and curl | K3\&K4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | L | S | S | S |  | S | M | M | L | S |
| CO 2 | S | M | S | S | M |  | M | M | M | M | M |
| CO 3 | S | M | S | S | M |  | S | S | S | M | M |
| CO 4 | S | M | S | S | M |  | M | M | L | M | M |

S - Strong; M - Medium; L - Low

## Unit -I

INTEGRATION: Reduction formula
Chapter 1: Section: 13
FOURIER SERIES: Fourier series - Even and Odd functions* - Half range Fourier series Development in cosine series - Development in sine series.

## Chapter 2: Section: 1 - 5

## Unit -II

ORDINARY DIFFERENTIAL EQUATIONS: Variable separable- Homogenous equations - NonHomogenous equations - Linear equations* - Bernoulli's equations - First order higher degree equations.

## Chapter 4: Omit Sections 6.1-6.4

## Unit -III

PARTIAL DIFFERENTIAL EQUATIONS: Derivation of Partial differential equations- Eliminations of arbitrary constants / functions - Different integrals of partial differential equations - Four standard types of first order equations* - Lagrange's equations

## Chapter 6: Section: 1-3, 5, 6

Unit -IV
LAPLACE TRANSFORMS: Definition - Laplace transforms of standard functions - Inverse Laplace Transforms* - Applications to solve ordinary differential equations and simultaneous equations

## Chapter 7

Unit -V
VECTOR ANALYSIS: Vector differentiation* - Gradient of a scalar point function - Divergence and Curl - Formula connecting Divergence and Curl - Vector integration - Line integral - Volume integral - Surface integral - Statement of Stoke's and Gauss theorem - Simple applications.
Chapter 8: Sections: 1.11, 1.12, 1.17 to 1.20, 2, 4, 5, 6, 9

* denotes self-study (Questions may be asked from these portions also)


## Book for study:

S. Narayanan, R. Hanumantha Rao, Manickavachagam Pillai and P. Kandaswamy, Ancillary Mathematics (Volume II), S. Viswanathan (Printers \& Publishers) Pvt Ltd., 2007.

## Books for reference

1. Shanti Narayan, Differential Calculus, Shyamlal Charitable Trust, New Delhi, 2004.
2. B. M. Aggarwal, Integral Calculus, Satya Prakashan Publishers, New Delhi, $1^{\text {st }}$ Edition, 1992.
3. P. N. Chatterji, Vector Calculus, Rajhans Prakahan Publishers, Chennai, $1^{\text {st }}$ Edition, 1998.

| Programme | $:$B.Sc. Electronics and Communication <br> Systems |
| :--- | :--- |
| Course Title | $:$ Allied Mathematics I |
| Year | $:$ First Year |
| Hours/Week | $: 6$ |


| Course Code | $:$ | 20UEC1AL1 |
| :--- | :--- | :--- |
| Semester | $:$ | I |
| Credits | $:$ | 5 |

Course Objective

1. To provide the basic knowledge of Matrices and Differential Calculus
2. To provide the basic knowledge of Fourier series and Laplace transform.
3. To give basic knowledge about Mathematical concepts in Vector Analysis

Course Outcomes (CO)

| CO1 | Remembering the basic concepts of Matrices and Differentiation. | K1 |
| :--- | :--- | :---: |
| CO2 | Understanding the concept of Characteristic equations to find Eigen Values <br> and Eigen Vector and Fourier series. | K2 \&K3 |
| CO3 | Understanding the concepts of Laplace transform and Vector analysis | K3 |

K1 - Remember; K2 - Understand; K3-Apply; K4 - Analyze

|  | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 |  | PSO 1 | PSO 2 | PSO3 | PSO4 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | S | S | S | L |  | S | S | S | M |
| CO 2 | S | S | S | S | M | S | S | S | S | M |
| CO 3 | S | S | S | S | M | S | S | S | S | S |

## Unit -I: MATRICES

Rank of a matrix - Simultaneous linear equations - Eigen values and Eigen vectors - Cayley-Hamilton Theorem (without proof) and its applications.

## Unit -II: DIFFERENTIAL CALCULUS

Curvature - Circle, radius and center curvature - Coordinates of center of Curvature - Evolutes and involutes - Radius of Curvature when the curve is given in polar coordinates - p-r Equation of the curve.

## Unit - III: FOURIER SERIES

Fourier series - Even and Odd functions - Half range Fourier series - Development in cosine series Development in sine series - Change of Interval.

## Unit - IV: LAPLACE TRANSFORMS:

Definition - Laplace transforms of standard functions - Inverse Laplace Transforms - Applications to solve ordinary differential equations and simultaneous equations.

Unit - V: VECTOR ANALYSIS: Gradient of a scalar point function - Divergence and Curl - Formula connecting Divergence and Curl - Gauss, Green's and Stoke's theorem (Statement and proof only)

## Books for study:

1. S. Narayanan, R. Hanumantha Rao, Manickavachagam Pillai and P. Kandaswamy, Ancillary Mathematics (Volume I ), S.Viswanathan (Printers \& Publishers) Pvt Ltd., 2007.
2. S. Narayanan, R. Hanumantha Rao, Manickavachagam Pillai and P. Kandaswamy, Ancillary Mathematics (Volume II) , S.Viswanathan (Printers \& Publishers) Pvt Ltd., 2007.

## Book for reference:

Dr. J. K.Goyal and G. P.Gupta, Laplace and Fourier Transforms, 16th Edition, Pragati Prakashan, Meerut, 2003

## e-resources:

1. https://www.youtube.com/watch?v=TQvxWaQnrqI
2. https://www.youtube.com/watch?v=qjhccqxP6ho
3. https://www.youtube.com/watch?v=pjA4TAmNIzI

Programme
Course Title
Year
Hours/Week
B.Sc. Electronics and Communication Systems
Allied Mathematics II $\quad$ Course Code : 20UEC2AL2
: First Year
: 6

| Comester | $:$ | II |
| :--- | :--- | :--- |
| Credits | $:$ | $\mathbf{5}$ |

## Course Objectives

1. To understand the concepts solving Numerical Algebraic equations and Differential equations.
2. To use finite differences and Numerical Differentiation.
3. To solve real time problems using various statistical techniques.

## Course Outcomes (CO)

| CO 1 | Understanding the concept of Differential equations, measures of central <br> tendency, measures of dispersion. | K 2 |
| :---: | :--- | :---: |
| CO 2 | Applying problem solving techniques to solve real world problems. | $\mathrm{K} 2 \& \mathrm{~K} 1$ |
| CO 3 | Analyzing the experimental and observational data and draw appropriate <br> conclusions. | K 4 |

K1 - Remember; K2 - Understand; K3-Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | S | M | S | L | M | S | S | M |
| CO2 | S | S | S | S | M | S | S | S | S |
| CO3 | S | S | S | S | M | S | S | M | M |

S - Strong; M - Medium; L - Low

## Unit - I:

Differential Equations Second Order Linear Differential Equations with constant Co-efficient - special method of finding particular integral.

## Unit - II:

Fourier Transforms Definition of Fourier transforms - Properties of Fourier transforms- Fourier Cosine transform - Fourier sine transform - Parseval's Identity Convolution theorem - examples.

## Unit - III:

Numerical Methods Solution of Simultaneous linear Algebraic Equations using Gauss Elimination Method - Gauss Jordan Method- Iterative Methods - Gauss Jacobi Method - Gauss Seidal Method Numerical Integration - Trapezoidal Rule - Simpson's rule.

## Unit - IV:

Finite Differences \& Numerical Differentiations Newton's Forward and Backward Interpolations and examples - Newton's Forward and Backward difference - Stirling's formula and examples.

Unit - V:
Measurements of Central Tendency Arithmetic Mean-Direct, Step deviation method - Median, Quartiles (Individual, continuous series) - Mode- Geometric mean - Harmonic mean - Standard deviation coefficient of dispersion, variations - Dispersion, Skewness.

## Books for study:

1. S. Narayanan and T. K. M. Pillai, Calculus, Vol III, Viswanathan Publishers, 2011.
2. Dr. P. Kandasamy, Dr. K. Thilagavathy and Dr. K. Gunavathi, Numerical Methods, S. Chand Publishers, 2012.
3. Examples in Statistics - H.C. Saxena, Atmaram \& Sons, Delhi, Seventh Edition, 1989.

## Books for reference:

1. M. K. Venkatraman, Numerical methods for Science and Engineering.
2. P. Navnitham, Business Mathematics \& Statistics, Jai Publishers, 2008.

Programme : B.Sc. Computer Science
Course Title : Allied Mathematics I
Year : First Year
Hours/Week : 6

Course Code : 20UCS1AL1
Semester : I
Credits : 5

## Course Objectives

1. To understand the concept of matrices and solving simultaneous algebraic equations numerically.
2. To use Newton's and Lagrange's method for computing the derivatives.
3. To solve real time problems using various statistical techniques.

## Course Outcomes (CO)

| CO 1 | Applying problem solving techniques to solve algebraic and transcendental <br> equations. | $\mathrm{K} 1 \& \mathrm{~K} 4$ |
| :--- | :--- | :---: |
| CO 2 | Understanding the concept of measures of central tendency, measures of dispersion. | K 2 |
| CO 3 | Analyzing the concepts of correlation and regression. | K 3 |
| CO 4 | Knowing to solve simultaneous linear algebraic equations. | K 4 |

K1 - Remember; K2 - Understand; K3-Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 |
| :--- | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | S | S | M | M |  | S | S | S | M |
| CO 2 | S | S | S | S | S |  | S | S | M | M |
| CO 3 | S | S | S | S | S |  | S | S | M | M |
| CO 4 | S | S | S | M | M |  | S | S | S | M |

S - Strong; M - Medium; L - Low

## Unit I

THE SOLUTION OF NUMERICAL ALGEBRAIC AND TRANSCENDENTAL EQUATIONS -
Bisection method - Method of Successive approximations - Regula -Falsi Method - Newton's method.
Chapter: 3; Section:3.1-3.4

## Unit II

SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS: Gauss Elimination - Gauss Jordan Method - Method of Triangularization - Gauss Jacobi Method - Gauss Seidel Method.

## Chapter:4; Section: 4.1-4.2, 4.4, 4.7-4.9

## Unit III

INTERPOLATION AND NUMERICAL DIFFERENTIATION:Interpolation by Newton's Forward Interpolation, Backward Interpolation-Lagrange's method - Newton's forward difference, backward difference to compute the derivatives.

## Chapter:6; Section:6.1-6.3, Chapter:8; Section: 8.7; Chapter: 9; Section:9.1-9.3

## Unit IV

MEASURES OF CENTRAL TENDENCY: Arithmetic mean, Geometric Mean and Harmonic Mean, Median, Mode. Standard deviation, Co-efficient of variation

## Chapter: 9; Section: Page No: 124-156, 166-180 \& Chapter: 10; Section IV: Page No:259-290

Unit V
CORRELATION -Pearson's co-efficient of Correlation - Rank Correlation - Regression - Linear Regression.
Chapter: 12; Page No: 396-420, Chapter: 13; Page No: 465-510

## Books for study:

1. P. Kandasamy, K. Thilakavathy, K. Gunavathy, Numerical methods, Sultan Chand Publishers 2003 Edition. (Unit I, II and III).
2. Statistics, RSN. Pillai \& Bhagavathi, Numerical methods, Sultan Chand Publishers, reprint 2002(Unit-IV \&V).

## Books for reference:

1. M. K. Venkatraman, Numerical methods for Science and Engineering, National Publishing Company, Fifth Edition, 2001 (Unit I, II and III).
2. P. Navnitham, Business Mathematics \& Statistics, Jai Publishers,2008. (Unit IV, V)

## Programme : B.Sc. Computer Science

Course Title : Allied Mathematics II
Year : First Year
Hours/Week : 6

| Course Code | $:$ | 20UCS2AL2 |
| :--- | :--- | :--- |
| Semester | $:$ | II |
| Credits | $:$ | 5 |

## Course Objectives

1. To understand the concepts of discrete structures, formal languages.
2. To use finite state machines to model computer operations.
3. To solve real time problems using various statistical techniques.

## Course Outcomes (CO)

| CO 1 | Understanding the basic concepts of probability theory. | K2 |
| :--- | :--- | :--- |
| CO 2 | Applying the concepts of formal languages and automata. | K3 |
| CO 3 | To know the basic ideas of normal forms. | K1 |
| CO 4 | Analyzing the use of probability distributions. | K4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | S | S | S | S |  | S | S | M | M |
| CO 2 | S | M | M | S | M |  | S | S | S | S |
| CO 3 | S | M | M | S | M |  | S | S | S | L |
| CO 4 | S | M | S | S | S |  | S | S | M | M |

S - Strong; M - Medium; L - Low

## Unit I

MATHEMATICAL LOGIC: Connectives, Negation, conjunction, Disjunction, Truth tables, Conditional and bi-Conditional, well-formed formulas, tautologies, equivalence, duality. Tautological implications.

## Chapter: 1; Section: 1-1, 1-2(1-2.1-1-2.4, 1-2.6, 1-2.7, 1-2.8, 1-2.9, 1-2.10, 1-2.11)

## Unit II

Normal forms: Disjunctive, Conjunctive, Principal Disjunctive, Principal Conjunctive. Predicates Calculus: Predicates, variables, quantifiers, free and bound variables. Inference theory of Predicate the Calculus.

Chapter:1; Section:1-3, (1-3.1)-(1-3.4), (1-5.1)-(1-5.4) 1-6.1-1-6.4

Unit III
FORMAL LANGUAGES AND AUTOMATA: Regular expressions, types of grammar, regular grammar, context free and context sensitive grammars, finite automata.

## Chapter:3; 3-3.2, Chapter:6; 6.1

## Unit IV

PROBABILITY: Mathematical Preliminaries-Permutation and Combination- Baye's Theorem (without Proof) - Problems in Probability.

## Chapter: 18; Page No: 726-759

## Unit V

THEORETICAL DISTRIBUTIONS: Binomial - Poisson - Normal distributions
Chapter: 19; Page No: 769-800

## Books for study:

1. J. P. Tremblay and R. P. Manohar, Discrete Mathematical structures with Applications to Computer science, TATA McGraw Hill. (Unit I, II and III).
2. RSN. Pillai \& Bhagavathi, Statistics, Sultan Chand Publishers, reprint 2002. (Unit-IV \& V).

## Books for reference:

1. V. Sundaresan, K. S. Ganapathy Subramanian, K. Ganesan. Discrete Mathematics, AR Publication, 2019.
2. S. P. Gupta, Statistics for Commerce Students, Sultan Chand Publishers.
3. P. Navnitham, Business Mathematics \& Statistics, Jai Publishers, 2008.

Programme : B. Sc (IT)
Course Title : Allied Mathematics -I
Year : First Year
Hours/Week : 6

## Course Code : 20UIT1AL1

Semester : I
Credits : 5

## COURSE OBJECTIVES

1. To understand the concept of matrices and solving simultaneous algebraic equations numerically.
2. To use Newton's and Lagrange's method for computing the derivatives.
3. To solve real time problems using various statistical techniques.

## COURSE OUTCOMES (CO)

| CO1 | Applying problem solving techniques to solve algebraic and transcendental <br> equations. | K3 |
| :--- | :--- | :---: |
| CO2 | Understanding the concept of measures of central tendency, measures of <br> dispersion. | K2 |
| CO3 | Analyzing the concepts of correlation and regression. | K 4 |
| CO 4 | Knowing to solve simultaneous linear algebraic equations. | $\mathrm{K} 2 \& \mathrm{~K} 3$ |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | M | L | S | M | S | S | S | M |
| CO 2 | S | S | L | M | S | S | S | M | M |
| CO3 | M | S | L | M | L | S | M | M | L |
| CO4 | S | S | M | L | M | S | M | S | L |

S - Strong; M - Medium; L - Low

## Unit I

The solution of Numerical Algebraic and Transcendental equations - Bisection method - Method of Successive approximations - Regula -Falsi Method -Newton's method*.
Chapter: 3: Section:3.1-3.4

## Unit II

Simultaneous Linear Algebraic Equations: Gauss Elimination* - Gauss Jordan Method - Method of Triangularization - Gauss Jacobi Method - Gauss Seidel Method.
Chapter:4: Section: 4.1-4.2, 4.4, 4.7-4.9

## Unit III

Interpolation and Numerical Differentiation: Interpolation by Newton's and Lagrange's method - Newton's forward difference, backward difference* to compute the derivatives.

Chapter:6: Section:6.1-6.3, Chapter:8: Section: 8.7, Chapter: 9: Section:9.1-9.3

## Unit IV

Measures of central tendency: Arithmetic mean*, Geometric Mean and Harmonic Mean, Median, Mode. Standard deviation, Co-efficient of variation

## Chapter: 9: Page No: 124-156, 166-173, Chapter: 10: Section IV Only

Unit V
Correlation -Pearson's co-efficient of Correlation - Rank Correlation - Regression - Linear Regression*

Chapter: 12; Page No: 396-420, Chapter: 13; Page No: 465-510

* Self-study (Questions may be asked from these portions also)


## Books for study:

1. P. Kandasamy, K. Thilakavathy and K. Gunavathy, Numerical methods, S. Chand and Company PVT. LTD, Reprint 2016. (Unit I, II and III).
2. R.S.N. Pillai and Bhagavathi, Statistics, Sultan Chand Publishers, reprint 2016. (Unit-IV \&V).

Books for reference:

1. M. K. Venkatraman, Numerical methods for Science and Engineering.
2. P. Navnitham, Business Mathematics \& Statistics, Jai Publishers, May 2017. (Unit IV, V)
e- resources:
3. https://nptel.ac.in/courses/122/102/122102009/
4. https://freevideolectures.com/course/4307/nptel-business-statistics/6

# Programme : B.Sc (IT). 

Course Title : Allied Mathematics II
Year : First Year
Hours/Week : 6
Subject Code : 20UIT2AL2
Semester : II
Credits : 5

## COURSE OBJECTIVES

1. To understand the concepts of discrete structures, formal languages.
2. To use finite state machines to model computer operations.
3. To solve real time problems using various statistical techniques.

COURSE OUTCOMES (CO)

| CO1 | Understanding the basic concepts of probability theory. | K 2 |
| :---: | :--- | :---: |
| CO2 | Applying the concepts of formal languages and automata. | $\mathrm{K} 3 \& \mathrm{~K} 4$ |
| CO3 | To know the basic ideas of normal forms. | K 1 |
| CO4 | Analyzing the use of probability distributions. | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | M | L | M | M | S | M | L | M |
| CO2 | S | S | M | S | S | S | S | S | M |
| CO3 | S | M | L | M | S | S | S | S | M |
| CO4 | M | S | L | M | S | S | M | L | M |

S-Strong; M-Medium; L-Low

## Unit I

Mathematical Logic: Connectives, Negation, conjunction, Disjunction, Truth tables, Conditional and biconditional*, well-formed formulas, tautologies, equivalence, duality. Tautological implications.

Chapter: 1: Section: 1-1, 1-2 (1-2.1-1-2.4, 1-2.6-1-2.11)

## Unit II

Normal forms: Disjunctive, Conjunctive, Principal Disjunctive, Principal Conjunctive. Predicates
Calculus: Predicates, variables, quantifiers, free and bound variables - Inference theory of the Predicate Calculus*.

Chapter 1: Section:1-3, (1-3.1-1-3.4), 1-5 1-6
Unit III
Formal Definitions of a languages: Regular expressions, types of grammar*, regular grammar, context free and context sensitive grammars, finite-state acceptors and regular grammers.

## Chapter 3: 3-3.2, Chapter 6: 6.1

Unit IV
Probability: Mathematical Preliminaries-Permutation and Combination- Baye's Theorem (without Proof) - Problems in Probability.

## Chapter 18: Page No: 726-759

Unit V
Theoretical Distributions: Binomial - Poisson - Normal distributions

Chapter 19: Page No: 769-800

* Self-study (Questions may be asked from these portions also)


## Books for study:

1. J. P. Tremblay and R. P. Manohar, Discrete Mathematical structures with Applications to Computer science, TATA McGraw Hill. (Unit I, II and III).
2. R.S.N. Pillai and Bhagavathi, Statistics, Sultan Chand Publishers, reprint 2016. (Unit-IV \& V).

## Books for reference:

1. V. Sundaresan, K. S. Ganapathy Subramanian and K. Ganesan. Discrete Mathematics., A.R Publications, July 2006.
2. Gupta S. P., Statistics for Commerce Students
3. P. Navnitham, Business Mathematics \& Statistics, Jai Publishers, May 2017.

## e- resources:

1. https://nptel.ac.in/courses/111/106/111106052/
2. https://nptel.ac.in/courses/106/103/106103070/
3. https://nptel.ac.in/courses/110/107/110107114/

| Programme $:$ BCA |  |  |
| :--- | :--- | :--- |
| Course Title | : Allied Mathematics -I |  |
| Year | $:$ First Year | Semester $:$ I |
| Hours/Week $: 6$ |  | Credits |

## COURSE OBJECTIVES

1. To understand the concept of matrices and solving simultaneous algebraic equations numerically.
2. To use Newton's and Lagrange's method for computing the derivatives.
3. To solve real time problems using various statistical techniques.

## COURSE OUTCOMES (CO)

| CO 1 | Applying problem solving techniques to solve algebraic and transcendental <br> equations. | K 3 |
| :---: | :--- | :---: |
| CO 2 | Understanding the concept of measures of central tendency, measures of <br> dispersion. | K 2 |
| CO 3 | Analyzing the concepts of correlation and regression. | K 4 |
| CO 4 | Knowing to solve simultaneous linear algebraic equations. | $\mathrm{K} 2 \& \mathrm{~K} 3$ |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO 2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | S | L | M | L | S | S | S | S | L |
| CO 2 | S | S | M | M | L | S | M | S | M | L |
| CO3 | S | S | L | M | M | S | S | S | M | L |
| CO 4 | S | S | M | L | M | S | S | L | M | S |

S - Strong; M-Medium; L-Low

## Unit I

The solution of Numerical Algebraic and Transcendental equations - Bisection method - Method of Successive approximations - Regula -Falsi Method -Newton's method*.

## Chapter: 3: Section:3.1-3.4

## Unit II

Simultaneous Linear Algebraic Equations: Gauss Elimination* - Gauss Jordan Method - Method of Triangularization - Gauss Jacobi Method - Gauss Seidel Method.

## Chapter:4: Section: 4.1-4.2, 4.4, 4.7-4.9

## Unit III

Interpolation and Numerical Differentiation: Interpolation by Newton's and Lagrange's method - Newton's forward difference, backward difference* to compute the derivatives.

## Chapter:6: Section:6.1-6.3, Chapter:8: Section: 8.7, Chapter: 9: Section:9.1-9.3

## Unit IV

Measures of central tendency: Arithmetic mean*, Geometric Mean and Harmonic Mean, Median, Mode. Standard deviation, Co-efficient of variation

## Chapter: 9: Page No: 124-156, 166-173, Chapter: 10: Section IV Only

## Unit V

Correlation -Pearson's co-efficient of Correlation - Rank Correlation - Regression - Linear Regression*

Chapter: 12; Page No: 396-420, Chapter: 13; Page No: 465-510

* Self-study (Questions may be asked from these portions also)


## Books for study:

1. P. Kandasamy, K. Thilakavathy and K. Gunavathy, Numerical methods, S. Chand and Company PVT. LTD, Reprint 2016.
(Unit I, II and III).
2. R.S.N. Pillai and Bhagavathi, Statistics, Sultan Chand Publishers, reprint 2016. (Unit-IV \&V).

Books for reference:

1. M. K. Venkatraman, Numerical methods for Science and Engineering.
2. P. Navnitham, Business Mathematics \& Statistics, Jai Publishers, May 2017. (Unit IV, V)

## e- resources:

1. https://nptel.ac.in/courses/122/102/122102009/
2. https://freevideolectures.com/course/4307/nptel-business-statistics/6

Programme : BCA
Course Title : Allied Mathematics II
Year : First Year
Hours/Week : 6

## Subject Code : 20UCA2AL2

Semester : II
Credits : 5

## COURSE OBJECTIVES

1. To understand the concepts of discrete structures, formal languages.
2. To use finite state machines to model computer operations.
3. To solve real time problems using various statistical techniques.

## COURSE OUTCOMES (CO)

| CO1 | Understanding the basic concepts of probability theory. | K 2 |
| :---: | :--- | :---: |
| CO 2 | Applying the concepts of formal languages and automata. | $\mathrm{K} 3 \& \mathrm{~K} 4$ |
| CO 3 | To know the basic ideas of normal forms. | K 1 |
| CO4 | Analyzing the use of probability distributions. | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | S | M | L | M | S | S | M | S | L |
| CO2 | S | S | M | S | L | S | M | S | M | M |
| CO3 | S | S | L | M | M | S | M | S | M | L |
| CO 4 | S | S | S | L | M | S | S | L | M | S |

## Unit I

Mathematical Logic: Connectives, Negation, conjunction, Disjunction, Truth tables, Conditional and biconditional*, well-formed formulas, tautologies, equivalence, duality. Tautological implications.

Chapter: 1: Section: 1-1, 1-2 (1-2.1-1-2.4, 1-2.6-1-2.11)

## Unit II

Normal forms: Disjunctive, Conjunctive, Principal Disjunctive, Principal Conjunctive. Predicates
Calculus: Predicates, variable s, quantifiers, free and bound variables - Inference theory of the Predicate Calculus*.

Chapter 1: Section:1-3, (1-3.1-1-3.4), 1-5 1-6

## Unit III

Formal Definitions of a languages: Regular expressions, types of grammar*, regular grammar, context free and context sensitive grammars, finite-state acceptors and regular grammers.

## Chapter 3: 3-3.2, Chapter 6: 6.1

## Unit IV

Probability: Mathematical Preliminaries-Permutation and Combination- Baye's Theorem (without Proof) - Problems in Probability.

## Chapter 18: Page No: 726-759

Unit V
Theoretical Distributions: Binomial - Poisson - Normal distributions

Chapter 19: Page No: 769-800

* Self-study (Questions may be asked from these portions also)

Books for study:

1. J. P. Tremblay and R. P. Manohar, Discrete Mathematical structures with Applications to Computer science, TATA McGraw Hill. (Unit I, II and III).
2. R. S. N. Pillai and Bhagavathi, Statistics, Sultan Chand Publishers, reprint 2016. (Unit-IV \& V).
Books for reference:
3. V. Sundaresan, K. S. Ganapathy Subramanian and K. Ganesan. Discrete Mathematics., A.R Publications, July 2006.
4. Gupta S. P., Statistics for Commerce Students
5. P. Navnitham, Business Mathematics \& Statistics, Jai Publishers, May 2017.
e- resources:
6. https://nptel.ac.in/courses/111/106/111106052/
7. https://nptel.ac.in/courses/106/103/106103070/
8. https://nptel.ac.in/courses/110/107/110107114/

Course Title : Allied Mathematics I
Subject Code : 20UCM1AL1
Year : First Year
Hours/Week : 6

Semester : I
Credits : 5

## COURSE OBJECTIVE

1. To understand the concepts of set theory, simple interest and compound interest related with banking.
2. To study the concepts of statistics and measures of central tendencies.
3. To use mathematical knowledge to analyze measures of dispersion.

## COURSE OUTCOMES (CO)

| CO1 | Remembering the basic concepts of set theory. | K1 |
| :---: | :--- | :---: |
| CO2 | Understanding the concepts of rate of interest, discounting and EMI. | K2 \& K3 |
| CO3 | Knowing the types of sampling techniques. | K2 |
| CO4 | Analyzing the functions and limitations of statistics. | K4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | M | M | L | M | M | L | M | S | L |
| CO 2 | S | S | M | S | S | S | S | S | S | M |
| CO3 | S | S | M | L | M | S | M | M | S | M |
| CO 4 | M | M | S | L | M | M | M | L | M | L |

S - Strong; M - Medium; L - Low
Unit - I
Set Theory: Types of sets- Set Operations - Laws and properties of Sets*- De Morgan's lawsApplications to business and economic problems.

Part -I: Business Mathematics; Section:3; Page No: 104-138

## Unit - II

Simple and Compound Interest - Effective rate and nominal rate of interest - Annuities* Discounting, Equated Monthly instalment(EMI)

## Part -I: Business Mathematics; Section:2; Page No: 43-88

## Unit - III

Statistics: Concepts - Scope, uses, functions and limitations of Statistics - Collection of Data - Primary and Secondary Data sources - Types of Sampling* - Classification, Tabulation and interpretation.

## Part -II: Business Statistics; Section:1-5; Page No: 1-91

Unit -IV
Measures of central tendencies: Arithmetic Mean*, Median and Mode, Geometric mean Harmonic mean.

Chapter: 9; Page No:124-156, 166-180
Unit -V
Measures of Dispersion: Range*, Mean deviation, Quartile deviation, Standard deviation, Coefficient of variation.

## Chapter:10; Page No: 241-290

* Self-study (Questions may be asked from these portions also)

Books for study:

1. P. Navnitham, Business Mathematics \& Statistics, Jai Publishers, May 2017. (Unit- I, II \& III)
2. R.S.N Pillai and Bhagavathi, Statistics, Sultan Chand Publishers, reprint 2016. (Unit- IV\&V)

## Book for reference:

Dr. P. R. Vittal, Business Mathematics and Statistics, Margam Publishers, 2002.
e- resources:

1. https://freevideolectures.com/course/4307/nptel-business-statistics/6
2. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{Bt} 1 \mathrm{Bi} 9 \mathrm{qhpmE}$

Programme : B. Com
Course Title : Allied Mathematics II
Year : First Year
Hours/Week : 6
COURSE OBJECTIVE

1. To understand the concepts of Matrices and linear programming problems
2. To study the concepts of analysis of time series.
3. To know the types and methods in index numbers.

## COURSE OUTCOMES (CO)

| CO1 | Remembering the basic operations of matrices. | K1 |
| :--- | :--- | :---: |
| CO2 | Understanding the formulation and problem-solving methods in LPP | K2 |
| CO3 | Applying correlation and regression in business problems | K3 |
| CO4 | Analyzing time series and its applications | K4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO1 | S | S | M | S | L | M | S | M | S | M |
| CO2 | S | S | S | L | M | S | S | M | L | M |
| CO3 | M | S | S | M | L | S | M | S | M | L |
| CO4 | S | S | S | S | S | S | L | M | S | M |

S - Strong; M - Medium; L - Low

Unit - I
Matrix: Basic Concepts - Addition and Multiplication of Matrices*-Properties- Inverse of Matrix Rank of a Matrix.

Part -I Business Mathematics: Section:4: Page No: 147 - 162; 175-195

Unit - II
Linear Programming Problem: Formulation - Solutions by Graphical Method, Simplex method: feasible solution, unbounded solution, infeasible solution.

## Part -I Business Mathematics: Section:9: Page No: 330-366

Unit - III
Correlation: Meaning and definition - Scatter diagram - Pearson's co-efficient of Correlation - Rank Correlation - Regression - Linear Regression* - Simple problems.

Chapter 12: Page No: 396-420; Chapter 13: Page No: 465-480

Unit -IV
Time Series Analysis: Definition, Uses, Components of Time Series Analysis, Measurement of Secular

## Chapter 15: Page No: 591-625

Unit -V
Index Numbers: Definition, Characteristics, Uses, Types and Methods*, Cost of Living Index: Growth Rate and Growth Index, Choice Based Index Numbers, Chain Base Index Numbers, limitations.

Chapter 14: Page No: 526-573

* Self-study (Questions may be asked from these portions also)


## Books for study:

1. P. Navnitham, Business Mathematics \& Statistics, Jai Publishers, July 2017. (Unit- I \& II)
2. R.S.N Pillai and Bhagavathi, Statistics, Sultan Chand Publishers, reprint 2016. (Unit- III, IV \& V)

## Book for reference:

S.P. Gupta, Statistics for Commerce Students.
e- resources:

1. https://nptel.ac.in/courses/111/104/111104027/
2. https://nptel.ac.in/courses/109/104/109104182/

Programme : B.Com (CA)
Course Title : Allied Mathematics I

## Subject Code : 20UCC1AL1

Year : First Year
Semester : I
Hours/Week : 6
Credits : 5
COURSE OBJECTIVE

1. To understand the concepts of set theory, simple interest and compound interest related with banking.
2. To study the concepts of statistics and measures of central tendencies.
3. To use mathematical knowledge to analyze measures of dispersion.

## COURSE OUTCOMES (CO)

| CO1 | Remembering the basic concepts of set theory. | K1 |
| :---: | :--- | :---: |
| CO2 | Understanding the concepts of rate of interest, discounting and EMI. | K2 \& K3 |
| CO3 | Knowing the types of sampling techniques. | K2 |
| CO4 | Analyzing the functions and limitations of statistics. | K4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | PSO 1 | PSO 2 | PSO 3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | S | M | L | M | M | S | M | M | L |
| CO 2 | S | S | M | S | L | S | S | M | S | L |
| CO 3 | S | S | M | L | M | S | S | M | S | M |
| CO 4 | M | S | S | L | M | S | M | L | M | L |

S - Strong; M - Medium; L - Low
Unit - I
Set Theory: Types of sets- Set Operations - Laws and properties of Sets*- De Morgan's lawsApplications to business and economic problems.

## Part -I: Business Mathematics; Section:3; Page No: 104-138

Unit - II
Simple and Compound Interest - Effective rate and nominal rate of interest - Annuities* Discounting, Equated Monthly instalment(EMI)

## Part -I: Business Mathematics; Section:2; Page No: 43-88

Unit - III
Statistics: Concepts - Scope, uses, functions and limitations of Statistics - Collection of Data - Primary and Secondary Data sources - Types of Sampling* - Classification, Tabulation and interpretation.

Part -II: Business Statistics; Section:1-5; Page No: 1-91

Unit -IV
Measures of central tendencies: Arithmetic Mean*, Median and Mode, Geometric mean Harmonic mean.

## Chapter: 9; Page No:124-156, 166-180

## Unit -V

Measures of Dispersion: Range*, Mean deviation, Quartile deviation, Standard deviation, Coefficient of variation.

Chapter:10; Page No: 241-290

* Self-study (Questions may be asked from these portions also)


## Books for study:

1. P. Navnitham, Business Mathematics \& Statistics, Jai Publishers, May 2017. (Unit- I, II \& III)
2. R.S.N Pillai and Bhagavathi, Statistics, Sultan Chand Publishers, reprint 2016. (Unit- IV\&V)

## Book for reference:

Dr. P. R. Vittal, Business Mathematics and Statistics, Margam Publishers, 2002.

## e- resources:

1. https://freevideolectures.com/course/4307/nptel-business-statistics/6
2. https://www.youtube.com/watch?v=Bt1Bi9qhpmE

Programme : B.Com (CA)
Course Title : Allied Mathematics II
Year : First Year
Hours/Week : 6
Subject Code : 20UCC2AL2

## COURSE OBJECTIVE

1. To understand the concepts of Matrices and linear programming problems
2. To study the concepts of analysis of time series.
3. To know the types and methods in index numbers.

COURSE OUTCOMES (CO)

| CO1 | Remembering the basic operations of matrices. | K 1 |
| :--- | :--- | :---: |
| CO 2 | Understanding the formulation and problem-solving methods in LPP | K 2 |
| CO 3 | Applying correlation and regression in business problems | K 3 |
| CO 4 | Analyzing time series and its applications | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | S | M | M | L |  | M | S | M | S | M |
| CO 2 | S | M | S | L | M |  | S | S | M | L | M |
| CO 3 | S | S | S | M | L | S | M | S | M | L |  |
| CO 4 | S | S | M | S | S | S | L | M | S | M |  |

S - Strong; M-Medium; L-Low
Unit - I
Matrix: Basic Concepts - Addition and Multiplication of Matrices*-Properties- Inverse of Matrix Rank of a Matrix.

## Part -I Business Mathematics: Section:4: Page No: 147 - 162; 175-195

## Unit - II

Linear Programming Problem: Formulation - Solutions by Graphical Method, Simplex method: feasible solution, unbounded solution, infeasible solution.

## Part -I Business Mathematics: Section:9: Page No: 330-366

Unit - III
Correlation: Meaning and definition - Scatter diagram - Pearson's co-efficient of Correlation - Rank Correlation - Regression - Linear Regression* - Simple problems.

Chapter 12: Page No: 396-420; Chapter 13: Page No: 465-480

Unit -IV
Time Series Analysis: Definition, Uses, Components of Time Series Analysis, Measurement of Secular Trend: Graphic Method, Semi average Method, Moving average Method*, Method of least squares.

## Chapter 15: Page No: 591-625

Unit -V
Index Numbers: Definition, Characteristics, Uses, Types and Methods*, Cost of Living Index: Growth Rate and Growth Index, Choice Based Index Numbers, Chain Base Index Numbers, limitations.

Chapter 14: Page No: 526-573

* Self-study (Questions may be asked from these portions also)


## Books for study:

1. P. Navnitham, Business Mathematics \& Statistics, Jai Publishers, July 2017. (Unit- I \& II)
2. R.S.N Pillai and Bhagavathi, Statistics, Sultan Chand Publishers, reprint 2016. (Unit- III, IV \& V)

Book for reference:
S.P. Gupta, Statistics for Commerce Students.
e- resources:

1. https://nptel.ac.in/courses/111/104/111104027/
2. https://nptel.ac.in/courses/109/104/109104182/

Programme : B.Com PA

## Course Title : Allied 1-MATHEMATICS FOR BUSINESS <br> Year : FIRST

Course Code: 20UPA1AL1
Hours / Week : 6
Credits: 5

## Course Objectives:

- To understand the concepts of Simple Interest and compound interest.
- To learn the concepts of Matrices and Linear programming problems.
- To study the concepts of Differentiation. And its applications in real world business problems.
- To study the concepts of Integration. And its applications in real world business problems.

Course Outcome:

| CO 1 | Understanding the concepts student must be able to solve Profit and loss <br> problems. | $\mathrm{K} 2 \& \mathrm{~K} 3$ |
| :---: | :--- | :---: |
| CO 2 | Remembering the basic concepts matrix student must be able to perform matrix <br> arithmetic operations. | K 1 |
| CO 3 | Understanding differentiation the student must possess the basic knowledge of <br> solving simple differential equation. | $\mathrm{K} 2 \& \mathrm{~K} 3$ |
| CO 4 | Understanding integration the student must be able to solve Integration <br> problems. | $\mathrm{K} 2 \& \mathrm{~K} 3$ |
| CO 5 | Analyzing the Linear Programming Problem, the student should have the <br> knowledge to solve simplex and graphical method. | K 4 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO 2 | PO 3 | PO 4 | PO 5 | PSO 1 | PSO 2 | PSO 3 | PSO4 | PSO5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | S | M | S | M |  | S | S | M | S | L |
| CO 2 | S | S | M | S | S | S | S | S | S | M |  |
| CO 3 | S | S | M | M | M | S | M | M | S | L |  |
| CO 4 | M | S | S | M | M | M | M | L | M | L |  |
| CO 5 | S | S | M | M | S | S | M | S | M | L |  |

S-Strong; M-Medium; L-Low

## Unit-I

Simple and Compound Interest-Effective rate of Interest - Sinking Fund* - Annuity - Present Value- Discounting bills - True Discount - Banker's Gain.

## Pg. No: (43-88)

## Unit-II

Matrix: Basic Concepts* -Addition and Multiplication of Matrices -Inverse of a Matrix- Rank of Matrix-Solving a system of simultaneous linear equations by inverse method.

Pg. No: (147-200)

## Unit-III

Differentiation: Simple Differentiation of Algebraic Functions-Uses of the Derivatives-Marginal concept-Elasticises-Increasing and decreasing functions, Break-even point*- Maxima and minima Problems-Application to Business problems.

## Pg. No: (247-296)

## Unit-IV

Integration: Indefinite integrals - standard Forms-Determination of c-Definite Integrals- Method of substitution -Method of partial fractions* -Method of Integration by Parts- Application to Business problems.

Pg. No: (303-322)

## Unit-V

Linear Programming Problem: Introduction to Operation Research-Meaning and scope of Operation Research-Limits of Operation Research -Formulation of Linear Programming Problem - Graphical Method of Linear Programming Problem- Simplex Method.

## Pg. No: (328-366)

## * Self-study (Questions may be asked from these portions also)

## Book for study:

P. Navanitham, Business Mathematics \& Statistics, Jai Publishers, May 2017.

## Books for references:

1. Sundaresan and Jayaseelan, Introduction to business Mathematics, Sultan Chand Co \& Ltd, New Delhi.
2. D. C Sanchetti. and V. K Kapoor, Business Mathematics, Sultan Chand Co \& Ltd, New Delhi.
3. G. K. Ranganath, C. S. Sampamgi Ram and Y. Rajan- A Text book Business Mathematics, Himalaya Publishing House.
4. Dr. P. R. Vittal, Business Mathematics and Statistics, Margam Publishers, 2002.

## e- resources:

1. https://nptel.ac.in/courses/109/107/109107115/
2. https://www.youtube.com/watch?v=KaLA1cWhQ1A
3. https://onlinecourses.nptel.ac.in/noc21_ma16/preview
4. https://nptel.ac.in/courses/111/104/111104144/
5. https://nptel.ac.in/courses/111/104/111104027/

Programme: B.Com. PA
Title: Allied 2 - Statistics for Business
Class: I Year

Course Code: 20UPA2AL2
Hours: 6 hrs/week
Credits: 5

## Course Objectives:

- To understand the basic concepts of Measure of central tendencies and Probability.
- To learn the concepts of Standard deviation, Coefficient of variation.
- To study the concepts of correlation and concurrent deviation.
- To learn the concept of time series and Index number calculation.


## Course Outcomes:

| CO1. | Understand the basic concepts of Measure of central tendencies the student must <br> be able to solve mean, median and mode. | $\mathrm{K} 2 \& \mathrm{~K} 3$ |
| :---: | :--- | :---: |
| CO 2. | Understand the concepts standard deviation the student must be able to solve <br> mean deviation and Skewness | K 2 |
| CO3. | Applying the concepts correlation and concurrent deviation in business <br> problems | K 3 |
| CO4. | Analyzing time series and Index Number and its applications | K 4 |
| CO5. | Applying the concept must able to solve problems related to probability | K 3 |

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze

|  | PO1 | PO2 | PO3 | PO4 | PO5 |  | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CO 1 | S | S | M | M | L |  | M | S | M | S | L |
| CO 2 | S | M | S | L | M |  | S | S | M | L | L |
| CO 3 | S | S | S | M | L |  | S | M | S | M | L |
| CO 4 | S | S | M | S | S |  | S | M | M | S | L |
| CO 5 | S | S | M | M | S | S | S | S | M | L |  |

S - Strong; M - Medium; L - Low

## Unit - I

Measures of central tendencies*, Arithmetic Mean, Geometric Mean, Harmonic Mean, Median, Mode.

## Pg. No: (125-180)

Unit - II
Meaning of Dispersion-Range*, Quartile Deviation, Mean Deviation, Standard Deviation and Coefficient of Variation. Skewnwss-Meaning-Measures of skewness-Pearson's and Bowley's coefficient of skewness.

Pg. No: (241-290), (338-354)
Unit - III
Correlation-Meaning and defintion-Scatter diagram, Karl Pearson's co-efficient of correlation,

> Spearman's Rank Correlation*, Co-efficient of concurrent deviation.

## Pg. No: (396-441)

## Unit - IV

Time Series-Meaning, Components and Models-Business forecasting -- Methods of estimating trendGraphic, Semi-Average*, Moving average and method of least squares - Seasonal Variation -- Method of Simple average. Index Numbers-Meaning, Uses and Methods of Construction* -- Un-Weighted and Weighted index numbers-Tests of an index number - Cost of living index number.

Pg. No: (526-572), (591-609)

## Unit - V

Probability - Concept and Definition* —Addition and Multiplication theorems of probability (statement only) - Si mple problems based on Addition and Multiplication theorems * only- Bayes theorem(without proof)Simple problems only.

Pg. No: (726-759)

* Self-study (Questions may be asked from these portions also)

Book for study:
R. S. N Pillai and Bhagavathi, Statistics, Sultan Chand Publishers, reprint 2016.

## Books for references:

1. S.P Gupta, Statistics Statistical Methods.
2. P. Navanitham, Business Mathematics \& Statistics, Jai Publishers, July 2017.
3. D.C.Sancheti and V.K.Kapoor. Statistics -Theory, Methods \& Application.
4. Frederick E.Croxton and J. Dudley. Cowden, Applied General Statistics.

## e- resources:

1. https://freevideolectures.com/course/4307/nptel-business-statistics/6
2. https://nptel.ac.in/courses/109/104/109104182/
3. https://www.youtube.com/watch?v=soZRfdnkUQg
