SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTSAND SCIENCE, COIMBATORE -641 020 DEPARTMENT OF PHYSICS

B.SC. PHYSICS

Mapping of Course outcomes and programme outcomes and programme specific outcomes

B.Sc. Physics Programme (2018-2019 onwards)

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTSAND

SCIENCECOIMBATORE -641 020

B.Sc.PHYSICS

PROGRAMMEEDUCATIONALOBJECTIVES(PEO)

The programeducational objectives are setinline with Institutional and Departmental mission statements. The program educational objectives of Department of Physics are to produce candidates of good basics knowledge in Physics concepts and wholater take the role of researchers with following qualities:

- **PEO1:** Consolidates the knowledge acquired at +2 level and improves the ability to solve the problems inphysics
- **PEO2:** Students will have an enhanced proficiency in understanding the physical concepts, principles and theories of Physics and applying it in day-to-day life.
- **PEO3:** Develop the ability to apply the knowledge acquired in the classroom and laboratories to specific problems in theoretical and experimental Physics.
- **PEO4:** Analytical thinking and applying skills to develop initiatives and innovative ideas for R&D, industryandsocial requirements.
- **PEO5:**Developsthelearners'personalitytosuitecurrentindustryenvironmentandentrepreneurial skills

PROGRAMMEOUTCOMES

- **PO1:**ProvideplatformstolearnPhysics,ChemistryandMathematicstheories,conceptsandpracticalskillswithappropri ate knowledge.
- **PO2:**Assimilatetheknowledgeonunderstandingthenatureandabilitytolinkthefactstoobserveanddiscoverscientificlaw s.
- **PO3:**Createnewskillsandtoolstoobtainpossiblesolutionsincomprehensionofthephysicalscienceproblemsincorporati ngmathematical modeling and theories.
- **PO4:**Enhancementofcriticalthinking,problemsolvingskills,digitallyefficientandmakingeffectiveworkingprofession als tosuitforscience, technical andresearchfield.
- PO5: Making best suitable personalities to serve for nation and society with ethical awareness and reasoning ability.

PROGRAMMESPECIFICOUTCOMES(PSOs)

Thegraduatesableto

- **PSO1:** improve the understanding capabilities in fundamental laws, concepts, principles and theories in the different academic field of Physics and its associated fields. Can understand the basics of computer and data science. Accomplish theoretical and laboratory skills
- **PSO2:**utilize the procedural knowledge acquired in different areas of study in Physics outlined above inresearchand development, teaching, government and publicservices.
- **PSO3:**assimilate interest and to the improve competencies of individuals in specialized area relating to thesubfields and current developments in Physics.
- **PSO4:** apply theoretical and laboratory skills to new/unfamiliar contexts to identify problems and issuesrelatingtoPhysics.Skillenhancementinanalysisandformulationofnewtheoriesandconcepts.
- **PSO5:** develop communication abilities to present their findings and results in technical and popular scienceforumsorganized in various universities andother privateorganizations.

By the endof the course, the students will be able to

CO1	Procureknowledgeon conceptsofgravitationand elasticityofmaterialswithphysical parameterscalculation ability	К
CO2	Measure the values of surface tension and viscosity of liquids at different temperatures.	U
CO3	Understanding of uses and applications of sound energy its measuringtechniques, derive the equation of motion for free, damped and force dosci llations.	К
CO4	Applytheknowledgeofreverberation-time, absorption co-efficient calculations in the construction of good auditorium, acoustics of buildings.	U
CO5	Impartingtechniquesfor generationofultrasonic wavesandhandlingofCRO	S

K-Knowledge;U-Understand;S-Skill

MAPPING

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	S	М	S	S	М	S	S	S	L	М
CO2	М	М	М	S	М	М	S	S	S	М
CO3	S	М	S	S	М	S	М	S	S	М
CO4	S	S	М	S	М	S	S	S	S	S
CO5	М	S	М	S	L	S	М	М	S	S

By the endof the course, the students will be able to

CO1	Constructlinearcircuitsandphenomenonofseriesandparallelresonancecircuits.	U
CO2	Predictsthemotionofchargedparticlesinelectric and magnetic fields.	K
CO3	Explainthebasicsofcapacitors, capacitance of capacitors and role of resistance in electrical circuits.	K
CO4	Understand various laws and principles related magnetism and magneticinduction	K
CO5	Classifythemagneticmaterialsandanalyzetheirbehaviorsusingassociatedt heories	S

K-Knowledge;U-Understand;S-Skill

MAPPING

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	S	М	М	М	М	S	S	М	S	М
CO2	S	М	S	М	L	S	М	S	S	М
CO3	S	М	S	S	М	S	S	М	S	L
CO4	S	М	М	S	М	S	S	М	М	L
CO5	S	S	М	S	М	S	S	М	S	М

CourseTitle : Electronics

COURSEOUTCOMES(CO)

Bythe endofthecourse, the students will be able to

CO1	Acquaintaboutbasicprinciplesofsemiconductormaterialsanddevices.	К
CO2	explore the various parameters of Transistor amplifiers, OP-AMP and Oscillators	K
CO3	Elucidatetheconceptsofrectifiersandabletodesignownpowersupplies.	U
CO4	Differentiateanaloganddigitalsystemsandtoworkwith variousnumbe rsystems involved in digitaltechnology	S
CO5	designanddevelopdigitalcircuits, essential for calculation and processing,	S

K-Knowledge;U-Understand;S-Skill

MAPPING

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	L	М	S	S	S	М	L
CO2	S	М	М	S	М	S	S	М	S	L
CO3	S	S	М	М	М	S	S	S	S	М
CO4	S	М	S	S	М	S	S	S	М	S
CO5	М	S	S	S	L	S	S	М	S	S

CourseTitle :Heat,ThermodynamicsandStatisticalMechanics

Course Code :18UPH4C04

COURSEOUTCOMES(CO)

By the endof the course, the students will be able to

CO1	Elucidatethebehaviorof gaslaws and the principle of kinetic theory	K
CO2	Assimilatethesignificanceofthermal conductionandradiation	K
CO3	Compare the various methods of production of low temperature and tounderstandtheirapplications	U
CO4	Applytheprinciples and laws to determine the entropy of asystem	U
CO5	Calculate the efficiency of heatengines distinguish classical statistics and quantum st atistics	S

K-Knowledge;U-Understand;S-Skill

MAPPING

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	М	L	S	S	М	М	М
CO2	S	S	М	S	М	S	S	S	М	М
CO3	М	S	М	S	М	М	S	S	S	М
CO4	S	М	S	S	М	S	S	М	S	S
CO5	М	М	S	S	М	S	М	S	S	М

Bythe endofthecourse, the students will be able to

CO1	Knowaboutthescalarandvectorfields, identities and theorems	K
CO2	Formulatevarietyofphysicalsystemsbymeansof variouscoordinatesystems with the benefit of vector concepts.	K
CO3	Solveelectrical circuitproblemsusingconceptofLaplacetransformation	S
CO4	Assimilatecomplexvariablesandspecialfunctions	K
CO5	SetupLagrange'sequationofmotionformechanical,electricalandharmonics ystems	U

K-Knowledge;U-Understand;S-Skill

MAPPING

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	М	S	S	М	L	S	S	S	S	М
CO2	S	S	S	М	М	S	S	М	S	М
CO3	S	S	S	S	М	S	S	S	М	М
CO4	М	S	S	М	М	М	S	S	S	L
CO5	М	S	S	S	S	М	S	S	S	М

By the endof the course, the students will be able to

CO1	Enrichthelevelofunderstandingondeterminationofdifferentparameters like focal length, magnification, refractive index of different medium werelength this lenges velocity of light encodimentation	K
	differentmedium,wavelength,thickness,velocityoflight,specificrotationetc.,	
CO2	Assimilate theories and production of interference, uses of interferometers and to determine refractive indices of optical materials using variety of refractometers methods.	К
CO3	Knowabouttheconceptofdiffraction, utility of diffractometers and its uses in spectral Analysis.	K
CO4	AnalyzePolarizationthroughopticalactivityofthemediumandworkwithcrystal technologies.	U,S
CO5	Applytheseideasonfabricatingdifferent opticalsparepartsforvariousapplications such as setting up of microscope, telescope and cameralenses.	U

K-Knowledge;U-Understand;S-Skill

MAPPING

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	М	М	S	S	S	М	М
CO2	S	S	S	S	М	S	S	S	S	М
CO3	S	S	S	S	М	S	S	S	S	М
CO4	М	S	М	S	М	S	М	S	S	S
CO5	S	М	М	S	S	S	S	М	S	М

By the endof the course, the students will be able to

CO1	Gainknowledgeaboutstructureofatoms, various atomic models and production of atomic spectra.	K
CO2	Clarifytheimportanceof variousatomicmodelsandelectronicconfigurationofelements.	K
CO3	Analyzethebehaviorof anatom undertheinfluenceof electricandmagneticfield with appropriate experimentalsetups	S
CO4	DistinguishclassicalandquantumtheoryofRamaneffect	K
CO5	Applydifferentspectroscopictechniquestostudythespectrographobtainedfr om spectroscopic devices.,	U

K-Knowledge;U-Understand;S-Skill

MAPPING

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	М	L	S	S	М	М	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	М	S	S	М	М	S	S	S	S	М
CO4	М	S	S	М	М	М	S	М	S	М
CO5	М	S	S	S	М	S	S	М	S	S

By the endof the course, the students will be able to

CO1	UnderstandthearchitectureofMicroprocessor,Microcomputersandtheirdev elopments.	K
CO2	Handletheinstructionformatandinstructionsetinassemblylevelprogrammingused in second generation microprocessor	K
CO3	Writeapplication-orientedassemblylevelprogrammingformicrocontrollers and microprocessors-based systems like stepper motorcontrolsand trafficcontrol systems etc.,	U
CO4	Developskillstointerfacevarietyofprogrammablecontrollerswith8085processor in research and technology	U
CO5	Acclimatethetechniquesinvolvedininterfacingmemoryandinterruptcontroller sand theirutility in the field of computer technology	S

K-Knowledge;U-Understand;S-Skill

MAPPING

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	М	М	S	S	S	М	М
CO2	S	S	S	М	М	М	S	S	М	М
CO3	S	S	S	М	S	S	М	S	S	S
CO4	М	S	М	S	М	S	М	S	S	L
CO5	М	М	S	S	М	S	М	S	S	S

CourseTitle :Relativity, WaveMechanics andAstrophysics

Course Code : 18UPH 6C09

COURSEOUTCOMES(CO)

By the endof the course, the students will be able to

CO1	Know about postulates and theories of relativity, basics of quantummechanicalconceptssuchasoperatorsandeigenfunctions.Elucidate detailsof spacephysics.	К
CO2	Elaborateexperimentalevidencesofdualnatureofmatterwaves	К
CO3	Handleoperators,functionsinvolvedinquantumequationsassociatedtosubatomi c problems	К
CO4	Settingupofquantumequationsforsubatomicsystemsandtoanalyzetheirbehavi ors.	S
CO5	Portray the principle associated to stellar evolution, concept of spacephysics and launching mechanism of satellites and rockets	U

K-Knowledge;U-Understand;S-Skill

MAPPING										
	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	S	М	S	S	М	S	S	М	М	L
CO2	S	М	S	S	М	М	S	S	М	М
CO3	S	М	S	М	М	М	S	S	S	М
CO4	М	S	S	S	М	М	S	S	S	М
CO5	S	М	S	М	L	S	S	М	М	М
				101	Ľ	D	5	111	101	101

MAPPING

By the endof the course, the students will be able to

CO1	Procure knowledge on elements of crystallography, structuraldetermination, conductivity laws and theories of solids, properties ofdielectric, and superconductors and newmaterials	К								
CO2	ucidatetheconceptsoffree electrontheoryandbandtheoryofsolids									
CO3	Usedielectric andsmart materialsinvariousfields									
CO4	Analyzethebehavior of superconductorsin magneticlevitation	S								
CO5	Understandthebehavioursofnewmaterialslikeceramics,shapememoryalloys, biomaterials andmetal matrixcomposites.	К								

K-Knowledge;U-Understand;S-Skill

MAPPING

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	М	М	S	S	S	М	М
CO2	S	S	S	М	М	S	М	S	М	L
CO3	S	S	S	М	М	S	S	S	М	М
CO4	М	S	S	S	М	М	S	М	S	М
CO5	S	S	М	S	L	S	S	М	М	М

By the endof the course, the students will be able to

CO1	Elucidateradioactivitylaws,nuclear radiationdetectors,nuclearmodels,properties of nucleus, nuclear hypothesis, types of nuclear reactions andbasictheories of elementary particles.	К						
CO2	olveproblemsrelated tohalf-lifeandmean lifeperiod, ageof heearththroughthe radio activity							
CO3	Distinguishnuclearmodelsandnuclear reactions							
CO4	Understandthebehaviorofcosmicraysandelementaryparticles							
CO5	Performoverallanalysesofnuclearpower plantsfromaman,machineandorganizational (human factors)point of view	S						

K-Knowledge;U-Understand;S-Skill

MAPPING

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	М	L	S	S	М	М	М
CO2	М	S	S	М	М	М	S	М	S	М
CO3	М	S	М	S	М	М	S	S	S	S
CO4	S	М	S	М	М	М	S	S	S	М
CO5	М	М	S	S	S	М	S	М	S	S

CourseTitle : Programming in C And Its Physics Applications **Course Code:** 18UPH 6C12

COURSEOUTCOMES(CO)

By the endof the course, the students will be able to

CO1	AssimilatethebasicstructureofCprogramming,datatypes,variablesandbasic functions	K						
CO2	Understand the different control, branching structure and writeprogrammesusing them	K						
CO3	Handlestructurevariables and unions in programme writing							
CO4	Declarepointersandhandlingfilesinprogrammewriting	U						
CO5	Apply the programming skill in physical science, simulation andtechnology	S						

K-Knowledge;U-Understand;S-Skill

MAPPING

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	S	S	М	S	М	S	М	S	М	S
CO2	S	S	S	S	L	М	S	S	S	М
CO3	М	М	S	S	М	S	М	S	S	S
CO4	М	М	S	S	М	М	S	S	S	М
CO5	М	S	М	S	М	М	М	S	S	S

CourseTitle :Alternate Energy Resource

COURSEOUTCOMES(CO)

Bythe endofthecourse, the students will be able to

CO1	Identify types of solarradiation and measuring instruments	K
CO2	Understandthe workingofbiogas plantsand windmills	K
CO3	DesignandimplementsolarPVvoltaicsystems,solarpumbinganddifferentsolar thermal devices	U
CO4	Analysesanddevelopenergybalanceequations	S
CO5	Categorizedifferentenergystoragesystemsandindirectsourcesofsolarenergy	S

K-Knowledge;U-Understand;S-Skill

MAPPING

	PSO1	PSO2	PSO3	PSO4	PSO5	PO1	PO2	PO3	PO4	PO5
CO1	S	S	S	М	М	S	S	М	М	М
CO2	S	S	М	М	S	М	М	S	S	S
CO3	М	М	S	S	S	М	S	S	S	S
CO4	М	М	S	S	S	М	S	S	S	S
CO5	S	S	М	S	М	S	S	М	S	М

SEMESTER-I Course Code COURSE TITLE Credi Exam MAX MARKS S. Part Hrs/ No. wk ts Hrs INT EXT TOT 18UGC1TA1 Tamil–I 1 Ι 3 25 75 6 3 100 2 18UGC1EN1 Π English–I 6 3 3 25 75 100 Core -1 3 Ш 18UPH1C01 5 5 3 25 75 100 Properties of Matter and Sound Allied-1 Mathematics-I 4 18UPH1AL1 5 III 6 3 25 75 100 Core Practical–I 5 18UPH2CP1 III 3 ------___ --General Experiments – I[@] Core Practical–II 6 18UPH2CP2 III 2 ----------Electronics Experiments[@] **Environmental Studies** 7 IV 2 2 18UGC1ENS 2 75 75 ___ **SUB TOTAL - I** 30 18 ------475 **SEMESTER-II** S. Course Code Part COURSE TITLE Hrs/ Credi Exam MAX MARKS No. wk Hrs ts INT TOT EXT 18UGC2TA2 Ι Tamil–II 3 3 25 75 100 1 6 2 3 18UGC2EN2 Π English-II 6 3 25 75 100 Core-2 3 18UPH2C02 III 4 5 3 25 75 100 Electricity and Magnetism Ш Allied –2 Mathematics-II 6 5 3 25 75 100 4 18UPH2AL2 Core Practical –I 5 18UPH2CP1 III 3 3 40 60 100 3 General Experiments – I Core Practical -II 18UPH2CP2 III 3 100 6 2 3 40 60 **Electronics Experiments** 7 18UGC2VAL IV Value Education 2 2 2 75 75 ---**SUB TOTAL - II** 30 23 675 ------

SCHEME OF EXAMINATION

SEM	ESTER-III								
S.	Course Code	Part	COURSE TITLE	Hrs/	Credit	Exam	MAX MARKS		
No				wk	s	Hrs	INT	EXT	TOT
1	18UGC3TA3	Ι	Tamil–III	6	3	3	25	75	100
2	18UGC3EN3	II	English–III	6	3	3	25	75	100
3	18UPH3C03	III	Core -3 Electronics	5	4	3	25	75	100
4	18UPH3AL3	III	Allied-3 Chemistry - I	4	4	3	15	60	75
5	18UPH4CP3	III	Core Practical -III General Experiments-II [@]	3					
6	18UPH4CP4	III	Core Practical –IV Analog and Digital Experiments [@]	2					
7	18UPH4AP1	III	Allied Practical - Chemistry [@]	2					
8	18UPH3NM1	IV	Non-Major Elective (NME)-I Solid State Chemistry-I/Basic Tamil-I	2	2	2		50	50
			SUB TOTAL - III	30	16				425
SEM	ESTER-IV								
S.	Course Code	Part	COURSE TITLE	Hrs/	Credit	Exam	M	AX MAR	KS
No				wk	S	Hrs	INT	EXT	TOT
1	18UGC4TA4	Ι	Tamil – IV	6	3	3	25	75	100
2	18UGC4EN4	II	English - IV	6	3	3	25	75	100
3	18UPH4C04	III	Core –4 Heat, Thermodynamics and Statistical Mechanics	5	5	3	25	75	100
4	18UPH4AL4	III	Allied –4 Chemistry - II	4	4	3	15	60	75
5	18UPH4CP3	III	Core Practical -III General Experiments-II	3	3	3	40	60	100
6	18UPH4CP4	III	Core Practical –IV Analog and Digital Experiments	2	3	3	40	60	100
7	18UPH4AP1	III	Allied Practical - Chemistry	2	2	3	20	30	50
8	18AUG4NM1	IV	Non-Major Elective (NME)-II Solid State Chemistry-II/Basic Tamil-II	2	2	2		50	50
9	18UGC4EXT	V	Extension Activities - NCC/NSS/SP		1		25	25	50
	1	1		1	1	1		1	1

SEM	ESTER-V								
S.	Course Code	Part	Course Title	Hrs/	Credit	Exam	M	AX MAR	KS
No.	Course Coue	rait	Course Thie	wk	S	Hrs	INT	INT	INT
1	18UPH5C05	III	Core - 5 Mathematical Physics and Classical Mechanics	5	5	3	25	75	100
2	18UPH5C06	III	Core - 6 Optics	5	5	3	25	75	100
3	18UPH5C07	III	Core - 7 Atomic Physics and Spectroscopy	5	5	3	25	75	100
4	18UPH5C08	III	Core - 8 Microprocessor and its Physics Applications	5	5	3	25	75	100
5	18UPH5EL1	IV	Elective - I [@] Alternate Energy Resources	2					
6	18UPH6CP6	III	Core Practical - V [@] Advanced Experiments	3					
7	18UPH6CP7	III	Core Practical - VI [@] Microprocessor and C - Programming in Physics	3					
8	18UPH5CP5	III	Models based on Concepts of Physics	2	3		40	60	100
			SUB TOTAL - V	30	23		140	360	500
SEM	ESTER-VI				1				
S.	Course Code	Part	Course Title	Hrs/	Credit	Exam	-	AX MAR	
No.	18UPH6C09	III	Core - 9 Relativity, Wave Mechanics and Astrophysics	wk 5	s 5	Hrs 3	INT 25	INT 75	INT 100
2	18UPH6C10	III	Core - 10 Solid State Physics	5	5	3	25	75	100
3	18UPH6C11	III	Core - 11 Nuclear Physics	5	5	3	25	75	100
4	18UPH6C12	III	Core - 12 Programming in C and its Physics Applications	5	5	3	25	75	100
		П <i>И</i>	Elective - I	2	4	3	25	75	100
5	16UPH6EL2	IV	Alternate Energy Resources						
5	16UPH6EL2 18UPH6CP6	IV	Alternate Energy ResourcesCore Practical – VAdvanced Experiments	3	3	3	40	60	100
			Core Practical – V	3	3	3	40	60 60	100
6	18UPH6CP6	III	Core Practical – V Advanced Experiments Core Practical - VI Microprocessor and						

ALLIED PHYSICS

FOR MATHEMATICS \ CHEMISTRY

SEM	ESTER – I \ I	II								
S. No.	Course code	Part	COURSE TITLE	HRS/ CREDIT WK S			MA	X MA	X MARKS	
						S	INT	EXT	тот	
01	18UMA1A L1\18UCH 3AL3	III	Allied Theory Physics- 1	4	4	3	15	60	75	
02	18UMA2A P1 \ 18UCH4A P1	III	Allied Practical: Physics	2	-	-	-	-	-	
SEM	ESTER – II \	IV								
01	18UMA2A L2 \ 18UCH4A L4	III	Allied Theory Physics - II	4	4	3	15	60	75	
02	18UMA2A P1\18UCH 4AP1	III	Allied Practical: Physics	2	2	3	20	30	50	

NON-MAJOR ELECTIVE (NME*)

FOD	CHEMICTD	57							
	<u>CHEMISTR'</u> ESTER – III	<u>r</u>							
SEME S. No.	Course code	Part	COURSE TITLE	HRS /WK	CREDIT S	Exam Hours	MA INT	X MA	RKS TOT
01	18UCH3N M1*	IV	INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS - I	2	2	2		50	50
SEME	ESTER – IV			•	•				
S.	Course	Part	COURSE TITLE	HRS	CREDIT	Exam	MA	X MA	RKS
No.	code			/WK	S	Hours	INT	EXT	тот
01	18UPH4N M2 [@]	IV	Energy Auditing	2	2	2		50	50

* Non Major elective I offered by Physics Department to Chemistry Department
 [@] Non Major elective II offered by Physics Department to other Departments

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020 For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme: B. Sc PhysicsSubject Code: 18UPH1C01Course Title: **PROPERTIES OF MATTER AND SOUND**Core: 1Year: IS Hours/WeekSemester: I5 Hours/Week5 Credits

UNIT - I: GRAVITATION

Newton's law of gravitation from Kepler's laws – Determination of 'G' by Boy's method – Poynting's method - Variation of 'g' with altitude, depth and latitude – Gravitational potential and field – solid, hollow spheres and Spherical shell.

UNIT - II: ELASTICITY

Relation between module of elasticity and Poisson's ratio – Work done in stretching and twisting – Twisting couple of a cylinder – Rigidity modulus – Static torsion and Torsional oscillations –uniform and non-uniform bending - Bending moment - 'q' by Koenig's method – Cantilever oscillations.

UNIT - III: SURFACE TENSION AND VISCOSITY

Molecular theory – Relation between curvature, pressure and surface tension – Applications to cylindrical, spherical drops and bubbles – Surface tension by Quincke's method, Jacgor's method and Ripple method – Variation of surface tension with temperature.

Poiseuille's formula – Viscosity by capillary flow method – Motion through highly viscous liquids-Stoke's formula - Viscosity of gases – Rankine's method.

UNIT - IV SOUND WAVES AND MEASUREMENTS

Laws of transverse vibration of strings -Velocity of transverse waves along a stretched string – Melde's experiment –Closed end organ pipe –Open end organ pipe. Classification of sound – Intensity of sound –Measurement of intensity of sound - Doppler effect –Microphones and loud speakers –Wave front at super sonic speed.

UNIT-V ACOUSTICS

Reverberation <u>–Sabine's formula</u> –Determination of absorption coefficient –Factors affecting the acoustics of building and their remedies –Ultrasonic waves – protection and applications – Acoustic grating –Wave velocity and group velocity – Frequency measurements – Study of waves using CRO - CRO Applications – Lissajou's figures.

TEXT BOOK:1

Author : Brijlal and Subramaniam,	2. Author : Brijlal and Subramaniam,
Book Name: Properties of Matter	Book Name: A Text Book of Sound
Publication: Educational & university	Publication: Vikas Publishing House
Puplishers Agra.	Pvt.Ltd.
Year: 1995	Year: 1978
Edition: 1 st	Edition:2 nd
UNIT-I-III	UNIT- IV&V

References/E-Resources:

- 1. H. J. Pain, The Physics of Vibrations and Waves, John Wiley, (2005), 6th Edition
- 2. David Halliday, Robert Resnick and Jearl Walker, Fundamentals of Physics, John Wiley & Sons, New Delhi, 9th Edition, 2010
- 3.. http://ocw.mit.edu/courses/#physics
- 4. <u>http://hyperphysics.phy-astr.gsu.edu</u>
- 5. <u>https://www.coursera.org</u>
- 6. http://nptel.ac.in/courses/115106090/

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020 For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme : B. Sc Physics Course Title : **ELECTRICITY AND MAGNETISM** Core : 2 Year : I 5 Hours/Week Subject Code: 18UPH2C02

Semester : II 5 Credits

UNIT-I: CURRENT ELECTRICITY

Electrical measurements: Potential difference – Electric current – Ohm's law – Resistance – Resistances in series and parallel – Kirchhoff's laws - Ammeters and voltmeters. R, C, L, RC, RL and RLC Circuits in AC and DC

UNIT-II: ELECTROSTATICS

Gauss's theorem and its applications- Coulomb's law – Mechanical force experienced by unit area of a charged sphere – Electrified soap bubble – Electrical images (Basics Only). Capacitors: Capacity of a conductor- Energy of a charged conductor- Sharing of energy between two capacitors - Principle of a capacitor- capacity of a spherical and cylindrical capacitorsCapacitors in series and in parallel.

UNIT-III: MAGNETIC INDUCTION

Biot-Savart law – Ampere's circuital law – Lorentz force - Electromagnetic Induction: Faraday's laws – Lenz's law - Fleming's right hand thumb rule – Self inductance – Self inductance of a long solenoid – Determination of self inductance by Rayleigh's method – Mutual inductance – mutual inductance between two solenoids – Determination of mutual inductance.

UNIT- IV: MAGNETISM

Magnetic potential – potential and intensity at a point due to a bar magnet- magnetic intensity at any point due to bar magnet - magnetic potential at a point due to a magnetized sphere – magnetic shell – potential at a point due to a magnetic shell – permeability – susceptibility – Relation between μ and χ - Gauss theorem in magnetism - applications.

UNIT -V: MAGNETIC PROPERTIES OF MATERIAL

Magnetic induction – Magnetization M – Properties of dia, para and ferro magnetic materials – Anti ferro magnetism and ferri magnetism - Electron theory of magnetism – Langevin's theory of para magnetism - Weiss's theory of ferro magnetism – determination of draw M-H curve (horizontal model) – Energy loss due to hysteresis.

TEXT BOOK:1

Author : Brijlal and Subramaniam Book Name: Electricity and Magnetism Publication: Ratan Prakashan Educational & University Publishers, Year: 1992 Edition: 19th **Reference/E-Resources:** 1. Author : Sehgal, Chopra and Sehgal

 Author : Sehgal, Chopra and Sehgal Book Name: Electricity and Magnetism Publication: Sultan Chand & Sons, Delhi Year: 1980 Edition:3rd

4.<u>http://ocw.mit.edu/courses/#physics</u> 5.<u>http://hyperphysics.phy-astr.gsu.edu</u> 6.<u>http://nptel.ac.in/courses/108106073</u> 2. Author : R. Murugesan Book Name: Electricity and Magnetism Publication: Sultan Chand & Sons, Year: 1998 Edition:2

- 2. Author : D.N. Vasudeva Book Name: Electricity and Magnetism
- 3. Author : Nagarathanam and Lakshminarayanan Book Name: Electricity and Magnetism

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020

For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme	: B. Sc Physics	Course Code: 18UPH3C03
Course Title	: ELECTRONICS	
Core	: 3	
Year	: II	Semester : III
5 Hours/Week		5 Credits

UNIT – I: SEMICONDUCTOR FUNDAMENTALS

Energy band in solids – types of semiconductor – majority and minority carriers – Mobile charge carriers and immobile ions – drift current in intrinsic semiconductor – **PN junction** – Depletion layer – barrier voltage – Effect of temperature – forward biased and reverse biased pn junction – Zener breakdown – Avalanche breakdown – H parameters in CE and CB configuration.

UNIT-II: AMPLIFIERS

Single stage Transistor amplifiers – CB,CE and CC – comparison of amplifier configuration – Amplifier classification based on the biasing condition – Class B push-pull amplifier – Complementary Symmetry push-pull class B amplifier – Distortion in amplifiers – RC and Transformer coupled two stage amplifiers – Direct-couple amplifier using complementary and symmetry of two transistors – Darlington pair

UNIT-III: SINUSOIDAL AND NON SINUSOIDAL OSCILLATORS

Comparison between an amplifier and oscillator – Damped and undamped Oscillations – Tuned base oscillator – Tuned collector oscillator - Hartley and Colpitt's oscillator Phase shift oscillator and Crystal controlled oscillator – Astable and Bistable multivibrator.

UNIT – IV: POWER SUPPLY AND OPERATIONAL AMPLIFIER

Rectifiers – Half wave - full wave rectifiers – voltage regulation using Zener diode and transistor-Characteristics of ideal and practical operational amplifiers – Inverting and Non-inverting amplifier – Adder – Subtractor - Integrator – Differentiator - Comparator.

UNIT-V: DIGITAL FUNDAMENTAL AND DEVICES

Basic logic gates – Demorgan's theorem – NAND and NOR as a universal gates – Half adder – Full adder – Half subtractor – Full subtractor – 4 Bit binary adder – RS flip flop- J-K flip flop – Digital to Analog Converter (R-2R ladder D/A converter) – Analog to Digital converter (Counter type A/D converter).

TEXT BOOK:

- 1. B L Theraja, "Basic Electronics", S.Chand and company Ltd, 2001, Edition: 11th UNIT : I-IV
- 2. V. Vijayendran, "Introduction to Integrated Electronics Digital and Analog", 2007, Edition: 1st, Reprint 2007.
- 3. Malvino and Leech, "Digital Principles & Application", McGraw Hill Company, Unit V

REFERENCE BOOK:

- 1. V.K. Metha, "Principles of Electronics", S.Chand and company Ltd, 1983, Edition: 3rd.
- 2. R.S. Sedha, "Applied Electronics", S.Chand and company Ltd, Reprint Year: 2010

References/E-Resources:

- 3. H. J. Pain, The Physics of Vibrations and Waves, John Wiley, (2005), 6th Edition
- 4. David Halliday, Robert Resnick and Jearl Walker, Fundamentals of Physics, John Wiley & Sons, New Delhi, 9th Edition, 2010
- 3. http://ocw.mit.edu/courses/#physics
- 4. http://hyperphysics.phy-astr.gsu.edu
- 5. <u>https://www.coursera.org</u>
- 6. http://nptel.ac.in/courses/115106090/

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020

For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme	: B. Sc Physics	Course Code: 18UPH4C04
Course Title	: HEAT, THERMODYNAMICS AND STATISTICA	AL MECHANICS
Core	: 4	
Year	: II	Semester : IV
5 Hours/Week		5 Credits

UNIT -I: THERMOMETRY AND EXPANSION

Concept of heat and temperature- Centigrade and Fahrenheit Scales-Types of thermometer- Platinum resistance thermometer-Expansion of solids- Coefficient of liner expansion -Coefficient of superficial expansion-relation between α and β -Expansion of liquids -Relation between Co-efficient of apparent and real expansion.

UNIT - II: TRANSMISSION OF HEAT

Coefficient of thermal conductivity- Forbe's method -Lee's method for bad conductors - Radial flow of heat -Widemann Franz's law -Stefan's law and verification -Newton's law of cooling -Wein's law Rayleigh jeans law and Planck's law -Solar constant -Surface temperature of sun -Angstrom's Pyroheliometer.

UNIT – III: LOW TEMPERATURE PHYSICS

Porous plug experiment and its results - Joule Kelvin effect -Temperature of inversion -Liquefaction of air, Liquefaction of helium -Adiabatic demagnetization – Electrolux Refrigerator.

UNIT - IV: THERMODYNAMICS

First law of Thermodynamics - Determination of γ -Clement and Desormer's method -Second law of thermodynamics – Carnot engine-Otto Cycle -Clausius clapcyron's latent heat equation and its applications -Entropy -Third law of thermodynamics -Entropy of a perfect gas -Entropy diagram -Zero point energy - Maxwell's Thermo dynamical relations

UNIT – V: STATISTICAL MECHANICS

Statistical equilibrium -Probability theorems in statistical thermodynamics- Maxwell Boltzmann distribution in terms of temperature -Ideal gas- Quantum statistics -Phase space - Bose Einstein statistics - Distribution law -Photon gas - Fermi Dirac statistics -Distribution law -Electron gas -Comparison of three statistics.

TEXT BOOK:

1. Brijlal and Subramanyam, "Heat and Thermodynamics", S. Chand & Company, 2006, Edition: 16th

- 2. D.S. Mathur, "Heat and Thermodynamics", S.Chand and Co,1970, Edition: 3rd.
- 3. A.B Gupta & H.P. Rai,"Heat and Thermodynamics", New central book,1995,Edition: 1st

- 1. David Halliday, Robert Resnick and Jearl Walker, Fundamentals of Physics, John Wiley & Sons , New Delhi , 9th Edition , 2010
- 2. <u>http://ocw.mit.edu/courses/#physics</u>
- 3. http://hyperphysics.phy-astr.gsu.edu
- 4. <u>https://www.coursera.org</u>
- 5. http://nptel.ac.in/courses/115106090/

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020

For candidates admitted from academic year 2016-17 onwards Under New CBCS

Programme	: B. Sc Physics	8		Subject Code: 18UPH5C05
Course Title	: MATHEMA	TICAL PHY	SICS AND CLASS	SICAL MECHANICS
Core	: 5			
Year	: III	Semester :	V: 5 Hours/Week	5 Credits

UNIT – I: VECTOR CALCULUS

Gradient of a scalar field – line, surface and volume integral – Divergence of a vector function – examples – Curl of a vector function – Important vector identities – Gauss divergence theorem – Stoke's theorem – Green's theorem – examples.

UNIT – II: COORDINATE SYSTEMS

Curvilinear coordinates – transformation of coordinates – orthogonal curvilinear coordinates – unit vectors in curvilinear systems – cylindrical coordinates – spherical polar coordinates – curl, divergence and gradient in curvilinear, cylindrical and spherical polar coordinates.

UNIT – III: MATRICES

Special types of matrices -Properties of unitary and orthogonal matrices -Eigen values and Eigen functions- Cayley - Hamilton theorem- Diagonalisation of matrix -Solution of quadratic equations by matrix method.

UNIT – IV: COMPLEX VARIABLES AND SPECIAL FUNCTIONS

Complex analysis- Analytic functions – Cauchy - Riemann equations- Cauchy's Integral theorem - Integral formula-Residues -Residue theorem (Definite integrals of trigonometry functions of $\cos \theta$ and $\sin \theta$).

Special Functions : Definition – Beta function – Gamma function – Evaluation of Beta function – Evaluation of Gamma function – Relation between Beta and Gamma functions.

UNIT - V: LAGRANGE'S FORMULATION

Conservation theorem – linear and angular momentum - energy – Degress of freedom – constraints – Generalized co-ordinates – transformation equations – Generalized displacement, velocity, acceleration, momentum and force – Principle of virtual work – D' Alembert's principle – Lagrange's equation of motion – linear Harmonic Oscillator, Simple Pendulum and Compound Pendulum.

TEXT BOOK

 Author : Satya Prakash
 Book Name: Mathematical Physics with Classical Mechanics
 Publication: Sultan Chand & sons
 Year: Reprint 2007
 Edition: Reprint 2007 (UNIT:I – V)

REFERENCE BOOK

Author : B.D.Gupta
 Book Name: Mathematical Physics
 Publication: Vikas Publishing house Year:
 Reprint, 1997
 Edition: Reprint, 1997
 Author: R. Murugeshan
 Book Name: Mechanics and Mathematical
 Physics,
 Publication: S.Chand, Edition 2008

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020

For candidates admitted from academic year 2016-17 onwards Under New CBCS

Programme	: B. Sc Physics	Subject Code: 18UPH5C06
Course Title	: OPTICS	
Core	: 6	
Year	: III	Semester : V
5 Hours/Wee	k	5 Credits

UNIT – I: OPTICAL INSTRUMENTS

Aberrations: – Lens aberrations – spherical aberrations – reducing spherical aberrations – comma – astigmatism – distortion – chromatic aberration – achromatic lens- telephoto lens- microscope – simple microscope-compound microscope- Telescope: angular magnification of telescope-Refracting Astronomical - Reflecting Astronomical - Reflecting telescopes - Eye pieces: Huygens and Ramsden – comparison – Velocity of light: Michelson's rotating mirror method - Houston's method.

UNIT – II: INTERFERENCE

Young's experiment-Coherent sources – phase difference and path difference- theory of interference fringes- Fresnel's Biprism – Lloyd's single mirror- Billet's split lens- Interference in thin films- interference due to reflected light- Colours of Thin Film - Newton's rings - Determination of the wavelength of the sodium light - Refractive index of a liquid - Newton's rings with white Light – Haidinger's fringes- Michelson Interferometer – visibility of fringes-applications- determination of the refractive index of gases – Jamin's Refractometer – Mach-Zehnder refractometer - Rayleigh's Refractometer - Fabry Perot Interferometer.

UNIT – III: DIFFRACTION

Fresnel assumptions - Rectilinear propagation of light - Zone plate -action of zone plate for an incident spherical wave front –difference between a zone plate and a convex lens-Fresnel and Fraunhofer Diffraction –diffraction at a circular aperature- diffraction at an opaque circular disc Fresnel Diffraction at a Straight edge- intensity at a point inside the geometrical shadow (straight edge) - Fresnel Diffraction at a narrow slit and Narrow wire- Fraunhofer Diffraction at a Single slit and Double slit - Plane Transmission grating - Dispersive power of grating.

UNIT - IV: POLARISATION

Polarization of transverse waves –plane of polarization- Brewster's law- polarization by refraction -Double refraction - Nicol prism – Nicol prism as an analyser- Huygen's theory for uniaxial crystals - Quarter wave plate and half wave plate - Production and Detection of Plane, Circularly and Elliptically Polarized light - Babinet's compensator – Dichroism- Optical activity - Fresnel's Explanation of optical rotation – Experimental verification - Specific rotation: Laurent's half shade polarimeter.

UNIT - V: LASERS AND FIBRE OPTICS

Lasers: Induced absorption - spontaneous emission and stimulated emission – The ruby laser – semiconductor laser.

Fibre Optics : Introduction – optical fibre – optical fibre system – optical fibre cable – total internal reflection – propagation of light through and optical fibre - critical angle of propagation – acceptance angle – numerical aperture – skip distance and number of total internal reflections – classification of optical fibres – The three types of fibres – single mode step index fibre – multimode step index fibre – graded index fibre –fibre optic communication system – merits of optical fibres.

TEXT BOOK :

1. Author: N. Subramaniam and Brijlal Book Name: A Textbook of Optics Publication: S.Chand & Co Ltd, New Delhi Year: 2010 Edition: 24 **REFERENCE BOOK:** 1. Author: Subir Kumar Sarkar Book Name: Optical Fibers and Fiber Optic **Communication Systems** Publication: S.Chand & Co Year: 2001 3. Author : Murugesan. R Book Name: Modern physics Publication: S.Chand & co., Year: 2007 Edition: 13th

2.Author : Ananthakrishanan,
Book Name: A text book of light
Publication: S.Viswanathan & co, Chennai
Year: 1966
Edition: 2ndEdition

4. Author : Ajoy K. GhatakBook Name: Modern opticsPublication: Tata Mc Graw-Hill Pub. Co.Ltd. Delhi

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020

For candidates admitted from academic year 2014-15 onwards Under New CBCS

Programme	: B. Sc Physics	Subject Code: 18UPH5C07
Course Title	: ATOMIC PHYSICS AND SPECTROSCOPY	
Core	: 7	
Year	: III	Semester : V
5 Hours/Week		5 Credits

UNIT-I: STRUCTURE OF THE ATOM

Introduction- Rutherford experiments on α particle scattering- Experimental verification- Bohr atom model – Critical potentials - atomic excitation – Experimental determination of critical potentials - Franck and Hertz method – Davis and Goucher's method - Mass spectrograph: Aston's mass spectrograph – Dempster's mass spectrograph.

UNIT-II: ATOM MODEL

Sommerfeld's relativistic atom model – The Vector atom model – Quantum numbers associated with the vector atom model – Coupling schemes – L-S coupling –J J coupling – The Pauli's exclusion principle – magnetic dipole moment – The stern and Gerlach Experiment – Spin orbit coupling.

UNIT-III: OPTICAL SPECTRA

Zeeman effect – Larmor's theorem – Paschen back effect – Stark effect – Production of X-rays – Bragg's law – Bragg's X-ray spectrometer – X- ray spectra – Characteristics of X-ray spectra – Mosley's law – Compton effect – Photo electric effect – Experimental investigation – Einstein's Photo electric equation – Photo voltaic cell.

UNIT- IV: MOLECULAR SPECTRA AND RAMAN EFFECT

Molecular spectra: Introduction – Origin of molecular spectra – Nature of molecular spectra – Rotation of linear system – Non rigid rotator -Theory of the origin of pure rotational spectrum of a molecule – Electronic spectra of molecule.

Raman effect: Experimental study of Raman effect – Quantum theory of Raman effect – applications-Laser Raman spectroscopy - Classical theory of Raman effect - vibrational Raman spectra of diatomic molecules.

UNIT-V: SPECTROSCOPIC TECHNIQUES

The energy of a diatomic molecule – vibrating diatomic molecule as a harmonic oscillator - spectroscopic techniques – constant deviation spectrograph – recording the spectrum – UV spectroscopy – Quartz spectrograph for near UV region - Infra red spectroscopy – absorption spectroscopy – Double beam IR spectrometer –Raman spectroscopy – Raman spectrometer.

TEXT BOOK:

1.Author : Murugesan. R
Book Name: Modern physics
Publication: S.Chand & co.,
Year: 2007
Edition: 13th

REFERENCE BOOK:

1. Author : J.B. Rajam	2. Author : Gurdeep Chatwal and
Book Name: Atomic Physics	Sham Anand
Publication: S.Chand and Co	Book Name: Spectroscopy
3. Author : Gupta kumar Sharma	
Book Name: Elements of Spectroscopy	
Publication: Pragati prakashan, Meerut,	
Edition : 23, Year : 2011	

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020

For candidates admitted from academic year 2014-15 onwards Under New CBCS

Programme	: B. Sc Physics	Subject Code: 18UPH5C08
Course Title	: MICROPROCESSOR AND ITS PHYSICS APPLICATIONS	
Core	: 8	
Year	: III	Semester: V
5 Hours/Week		5 Credits

UNIT - I: INTRODUCTION TO INTEL 8085 MICROPROCESSOR AND MEMORY

Evolution of Microprocessor-First, second, third and fourth generation microprocessors- Microprocessor based systems - Micro, Mini and Large computers - Advantages and disadvantages of microprocessor based system - General description of Intel 8085 - Pin configuration - 8085 Signal description summary - Block diagram of Intel 8085 - Intel 8085 architecture - Introduction to memory – Semiconductor memory - ROM, PROM, EPROM, static RAM, DRAM and NOVRAM.

UNIT - II: INSTRUCTION SETS AND BASIC PROGRAMMING

Instruction format of 8085 – Basics of Addressing modes-Instruction set –Data transfer Instructions – Arithmetic instructions – ADD reg; ADI d8; ADD M; ACI d8; ADC reg; ADC M; SUB reg; SUI d8; SUB M; SBB reg; SBI d8; SBB M; DAA; DAD rp; INR reg; INR M; DCR reg; DCR M; INX rp and DCX rp with examples.

Logical instructions – ANA reg; ANI d8; ANA M; ORA reg; ORA M; ORI d8; XRA reg; XRI d8; XRA M; CMP reg; CPI d8; CMP M; CMA; STC; CMC; RLC; RRC;RAR and RAL with examples.

Branching and Machine control instructions- JMP addr16; J<condition> addr 16; CALL addr 16; C <condition> addr 16; RET; R <condition> ; RSt n; PCHL; DI; EI; SIM; RIM HLT and NOP with detailed descriptions - Assembler – Assembler Directive - Flow Charts – Assembly language program development tools – Program development algorithms.

UNIT- III: ASSEMBLY LANGUAGE PROGRAMMING

Programme to transfer data between memory and accumulator – 1's and 2's complement of 8 bit data – Programme to add two 8 bit data –Subtract two 8 bit data – Subtract two BCD data – Binary to Gray – Gray to Binary conversion.

Programme to add two 16 bit data –Subtract two 16 bit data – Add two BCD data – add an array of datas -Programme to sort an array of data in Ascending and Descending order- Programme to multiply two numbers of 8 bit data - Programme to find the square root of a given binary number – Programme to search a smallest in the given array of data.

UNIT- IV: MEMORY INTERFACING AND INTERRUPTS

Interfacing SRAM and EPROM – Memory capacity – Choice of memory IC's and address allocation – Interfacing I/O devices and peripheral IC's — I/O device mapping (simple descriptions) - Needs for interrupts – Types of interrupts — Polling of interrupts – Data transfer schemes – Synchronous data transfer scheme – Asynchronous data transfer scheme – Interrupt driven data transfer scheme - 8259 Programmable interrupt controller – 8255 peripheral interface-8257 DMA controller.

UNIT- V: APPLICATIONS OF MICROPROCESSOR

Temperature control system– Motor speed control system – Stepper motor control system – Traffic control system – Keyboard control system.

TEXT BOOK:

1.Author : A.Nagoorkani
Book Name: Microprocessor and its applications
Publication: RBA Publication, Chennai.
Year: 1999,
Edition: 1st

REFERENCE BOOK:

1.Author : A.P Mathur,	2.Author : Ramesh Gaonkaer	
Book Name Introduction to Microprocessor	Book Name: . Microprocessor and its	
Publication: Tata Mc-GrawHill	Application	
Year: 2001	Publication: ,Penram Publication, Mumbai	
Edition: 3rd	Year: 1999	

For candidates admitted from academic year 2014-15 onwards Under New CBCS

Programme	: B. Sc Physics	Subject Code: 18UPH6C09
Course Title	: RELATIVITY, WAVE MECHANICS AND ASTR	OPHYSICS
Core	: 9	
Year	: III	Semester : VI
5 Hours/Week		5 Credits

UNIT – I: RELATIVITY

Michelson-Morley Experiment - Gallilean Transformation and Newtonian Relativity - Inadequacy of Gallilean Transformation - Fundamental Postulates of Special Theory of Relativity - Lorentz Transformation Equations - Length Contraction and Time Dilation –Law of Addition of Velocity- Variation of Mass with Velocity -Equivalence of Mass and Energy.

UNIT – II: ORIGIN OF WAVE MECHANICS

De Broglie hypothesis – Concept of Phase Velocity – Concept of Group Velocity – Relation between group velocity and wave velocity – Experiments of Davisson and Germer and G.P. Thomson – Wave packet – Heisenberg uncertainity principle and its proof – Illustrations – Diffraction of electrons by a slit – Gamma ray microscope – Applications of uncertainity principle – Non-existence of electrons in the nucleus – Radius of Bohr's first orbit of hydrogen atom and energy of ground state.

UNIT - III: FORMULATION OF WAVE MECHANICS

Wave function for a free particle – Schrodinger's one dimensional wave equation – Time dependent and independent parts- Physical interpretation of wave function – Operators in quantum mechanics – Eigen functions – Eigen value – Eigen value equations – Postulates of quantum mechanics – Orthogonality of Eigen functions – Probability current density – Ehrenfest's theorem.

UNIT – IV: OPERATORS

Significance of various quantum numbers -n, l, m_l – Electron probability density – Commutation relations – Position and momentum, H and P, between the components of L, L^2 with L_x , L_y and L_z – Ladder operators L_+ and L_z – Particle in a box – Potential step – The barrier penetration problem – Linear harmonic oscillator.

UNIT -V: ASTRO PHYSICS

Solar system-Astronomical Instruments-Refracting telescope-Reflecting telescope-Radio telescope measurement of distance-Size-Rotation – Mass of the sun-Surface temperature – Atmosphere -Planets-Asteroids – Comets -Meteorites-Sun - Star- Physical Properties of Stars-Masses of stars-Stellar Evolution-Milky Way Galaxy – Expanding Universe- Big-bang theory.

TEXT BOOK

1. Author: Murugesan. R	2.Author : Swati Saluja, Sathya Prakash
Book Name: Modern physics	Book Name: Quantum mechanics
Publication: S.Chand & co.,	Publication:kedar Nath , Ram Nath and co
Year: 2007	Year: 2005
Edition: 13 th	Edition: I st

3.Author : Brijlal Subramaniam Book Name: Properties of matter Publication: S.Chand & co., Year: 1991 Edition: 6th

REFERENCE BOOK:

1.Author : G. Arul dass	2. Author : Guptha kumar sharma	
Book Name: Quantum mechanics	Book Name: Quantum mechanics	
Publication: Prentice-hall of India, Pvt	Publication: Jai prakash ovath and co	
Year: 2004	Year: 2005	
Edition: 3 rd Printing	Edition:25 th	

For candidates admitted from academic year 2016-17 onwards Under New CBCS

Programme	: B. Sc Physics	Subject Code: 18UPH6C10
Course Title	: SOLID STATE PHYSICS	
Core	: 10	
Year	: III	Semester: VI
5 Hours/Wee	k	5 Credits

UNIT – I: CRYSTAL STRUCTURE

Elements of Crystal Structure - X ray Diffraction - Bragg's Law - Miller Indices - Simple Crystal Structures - Calculation of number of atoms per unit cell – Atomic radius – co-ordination number – Packing factor for SC,BCC,FCC and HCP structures – Rotating crystal method - Powder Photograph method – determination of unit cell dimensions. Crystal imperfections: Point defects – line defects – Surface defects – Volume defects.

UNIT - II: ELECTRON THEORY OF SOLIDS

Electrical conduction classification of conducting materials – Drude Lorentz theory – Expression for electrical conductivity – Thermal conductivity – Expression for thermal conductivity – Wiedemann – Franz law – electrical resistivity versus temperature- schottky effect- photoelectric effect – photoelectric emission-free electron gas in three dimensions- periodic boundary conditions- The Fermi Energy failure of the free electron model.

UNIT – III: DIELECTRIC MATERIALS

Dielectric polarization -Dielectric constant and displacement vector - Different types of dielectric polarization – Frequency and temperature effects on polarization – Dielectric loss – Dielectric break down – local fields – Clausius Mossotti relation.- Piezoelectric effect- properties of ferroelectrics.

UNIT - IV: SUPERCONDUCTORS

Super conductivity phenomena – Effect of magnetic field - Properties of Superconductors – Type I and Type II Superconductors -Meissner effect – High Tc Superconductors -SQUIDS. Isotope effect -Thermodynamic effects (Entrophy, Specific heat, Thermal conductivity) – Application of superconductors (Electric generators, Electric power transmission line, Magnetic levitation

UNIT - V: TYPES OF BONDING AND NEW MATERIALS

Types of bonding- Ionic bond- characteristics of ionic bond- Covalent bond – characteristics of covalent bond – Metallic bond – characteristics of metallic bond- Vander waals bonding - New materials: Metallic glasses - Fiber Reinforced Plastics (FRP) and Fiber Reinforced Metals (FRM) – Surface Acoustic Wave materials- applications (Delay lines and memories, frequency filter,

surface acoustic wave resonator) - Metal matrix composites – Biomaterials – Ceramics – Shape memory alloys – SMART materials – conducting polymers.

TEXT BOOK:

1.Author : S. L. Gupta & V. Kumar, Book Name:Solid state Physics Publication: K.Nath & Co,Meerut Year:1984 Edition: 4th

2. Author : Dr. M. Arumugam Book Name: Material Science Publication: Anuradha Agencies Edition: Revised 3, UNIT –V

REFERENCE BOOK:

1 Author : S.O. Pillai Book Name: Solid State Physics

Publication: New Age International Publishers Year:2002 Edition: Revised 6th UNIT – I to IV 2. Author: Saxena Gupta Saxena Book Name : Solid State Physics Publication : Pragathi Year : 2010 Edition : 14

For candidates admitted from academic year 2014-15 onwards Under New CBCS

Programme	: B. Sc Physics	Subject Code: 18UPH6C11
Course Title	: NUCLEAR PHYSICS	
Core	: 11	
Year	: III	Semester: VI
5 Hours/Week		5 Credits

UNIT – I: RADIO ACTIVITY

Radio activity - Fundamental laws of Radio activity - Laws of Radioactive disintegration - Half life - Mean life - Laws of Successive disintegration – Radioactive dating – The age of earth – radioactive series – Alpha emission – properties of alpha particles – alpha spectrum – Geiger Nuttal law – Beta decay – Properties of Beta decay – Gamma ray spectrum – Determination of the wavelength of gamma rays.

UNIT - II: NUCLEAR ACCELERATORS AND DETECTORS

Linear accelerator (LINAC) – Betatron – Synchroton – Proton Synchroton – Ionization chamber – GM counter – Wilson's cloud chamber – Bubble chamber – Spark chamber - Scintillation counter – Cerenkov counter

UNIT- III: NUCLEAR PROPERTIES AND MODELS

Classification of nuclei - General properties of nucleus – Binding energy – Nuclear stability - Theories of nuclear composition – Nuclear forces - Proton-electron hypothesis – Proton-neutron hypothesis – Models of nuclear structure – The Liquid drop model – The Shell model – The Collective model.

UNIT - IV: NUCLEAR REACTIONS

The Discovery of artificial transmutation – The Q-value equation for a Nuclear reaction – Types of nuclear reactions – Energy balance in nuclear reactions and the Q-value – Threshold energy of an endoergic reaction – Nuclear fission – critical mass – chain reaction – Nuclear fusion – source of stellar energy - Transuranic elements.

UNIT- V: COSMIC RAYS AND ELEMENTARY PARTICLES

Discovery of cosmic rays – latitude effect – Azimuth effect – Altitude effect – Primary and Secondary cosmic rays – cosmic ray showers – Discovery of positron – the mesons – Van allen belts.

Elementary Particles: Classification – Particles and anti particles – the fundamental interactions.

TEXT BOOK:

REFERENCE BOOK:

1.Author : Murugesan. R
Book Name: Modern physics
Publication: S.Chand & co.,
Year: 2007
Edition: 13th

1.Author : Pandiya and Yadav ,
Book Name: Elements of Nuclear Physics
Publication: Kedar Nath , Ram Nath, Meerut
Year: 1997
Edition: 7th

2. Author : D. C. Tayal,
Book Name: Nuclear Physics
Publication: Himalaya Publishing ,
Year: 2003
Edition: 9th

For candidates admitted from academic year 2014-15 onwards Under New CBCS

Programme	: B. Sc Physics	Subject Code: 18UPH6C12
Course Title	: PROGRAMMING IN C AND ITS PHYSICS A	PPLICATIONS
Core	: 12	
Year	: III	Semester : VI
5 Hours/Week 5 Credits		5 Credits

UNIT – I: C LANGUAGE FUNDAMENTALS

History of **C** language - Basic Structure of C Programming - Character set - Constants - Variables - Data Types - Operators and Expression - Escape Sequence Characters -Library Functions - Input and Output statements: scanf - printf - getchar - putchar - gets – puts.

UNIT - II: CONTROL STRUCTURES

Arrays Variables – Assigning Data for Array - One, Two and Multi dimensional Array - Conditional control statement: if, else, nested if, switch case - Looping statement: while, do while, for, nested for- break - continue and Unconditional control statement: go..to statement.

UNIT - III: FUNCTIONS, STRUCTURE AND UNIONS

Function declaration – argument – Call the function – Return statement - Type of functions - Recursive functions - Passing Array to functions - Automatic, Static, Register and External storage - Defining a structure – Declaring structure variables – Accessing structure members – Structure initialization – Structure within structures – Structures and functions – Unions – Size of structures.

UNIT – IV: POINTERS AND FILES

Understanding pointers – Accessing the address of a variable – Declaring pointer variables – Initialization of pointer variables – Accessing a variable through its pointer – Pointer expressions

Defining and opening a file – Closing a file - Input/output operation in files – Error handling during I/O operations – Command line arguments.

UNIT - V: PHYSICS APPLICATION PROGRAMMS

Quadratic equations - Matrix multiplication - Conversion of temperature from C to F and F to C - Determination of G by Boy's Method - Young's Modulus - Uniform bending - Spectrometer - Refractive index & Dispersive power of prism - Newton's Rings - Radius of curvature - Determination of Velocity of light - Foucault's Rotating Mirror Method - Estimation of Average Global Solar Radiation

BOOK FOR STUDY:

1. A textbook on C	by	E. Karthikeyan Publication: Prince–Hall of India Pvt	
		Ltd, New Delhi	
		Year: 2008.1 st edition	
BOOKS FOR REFERENCE:			
1. Programming in ANSI C		by E. Balagurusamy	
		3rd edition Tata Mc Graw Hill	
		Publishing Company Limited, 2004	
2. Let us C	by	Yeshavant Kanitkar 4 th edition, BPB publications, 2002	

For candidates admitted from academic year 2016-17 onwards Under New CBCS

Programme	: B. Sc Physics	5			Subject Code: 18U	PH6EL1
Course Title	: ALTERNAT	TE ENERGY	Y RES	SOURCES		
Elective	: I					
Year	: III	Semester:	VI	2 Hours/Weel	k	4 Credits

UNIT – I: INTRODUCTION

Introduction – Consumption pattern – Oil shock – Types based on usage –Usage pattern of primary energy sources – Necessity of harnessing alternate energy resources – Energy chain –Energy and its major classifications.

UNIT – II: ENERGY CRISIS

Salient features and drawbacks of energy sources in practice- Alternate energy sources and their significances- Energy and its influence on environment -Heating values of various fuels – Energy status – Global context –Indian context

UNIT – III: THERMAL CONVERSION

Principles of Solar thermal conversion - Solar collectors - Solar water heater- Solar passive space heating and cooling systems - Solar industrial heating systems - Solar cookers – Solar furnaces- Solar green house -Solar desalination - Solar pumping – Satellite solar power stations

UNIT – IV: BIOMASS ENERGY

Introduction - Photosynthesis - Bio-gas generation - Digesters and their design - Some materials for biogas and biomass - Advantages and disadvantages of biological conversion of solar energy applications of biogas.

UNIT - V: FUEL CELL AND PHOTOVOLTAICS

Introduction to fuel cell – Potential applications – Classifications – Phosphoric acid fuel cell (PAFC) – Alkane fuel cell (AFC) – Fuel cell power plot- Magneto hydro dynamic (MHD) power conversion – Principle MZHD generator – Advantages – Limitations.

Photovoltaics : Introduction to photovoltaics – Photovoltaic effect – Photovoltaic cell – Photovoltaic system for power generation – Applications of photovoltaic system.

TEXT BOOK:1

- 1. B.H. KHAN Non-conventional Energy Resources, Tata Mc Graw-Hill Publishing Company Ltd, 2006.
- 2. G.D. RAI Solar Energy Utilization, Khanna Publishers, 1995.
- 3. S.P. SUKHATME solar energy Principles of thermal collection and storage- 2 nd edition./ Tata Mc-Hill –coy 2006

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020 For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme : B. Sc Physics Course Title : **GENERAL EXPERIMENTS- I** Core Practical : I Semester : II

Subject Code : 18UPH2CP1

Year : I 3 Hours/Week 3 Credits

Any Fifteen of the Following Experiments:

- 1. Error Analysis I (Vernier Caliper, Physical Balance, Screw Gauage).
- 2. Error Analysis II (Spectro meter, Travelling Microscope).
- 3. Young's Modulus-Non uniform bending (Pin & Microscope method).
- 4. Young's Modulus Cantilever depression (Pin & Microscope method).
- 5. Rigidity modulus Torsional Pendulum.
- 6. Compound Pendulum Determination of 'g'.
- 7. Surface tension Capillary rise.
- 8. Metre bridge Resistance and specific resistance.
- 9. Sonometer Frequency of tuning fork.
- 10. Surface tension Method of drops.
- 11. Newton's law of cooling.
- 12. Determination of 'M'-Tan C position.
- 13. Potentiometer low range voltmeter calibration.
- 14. Spectrometer Refractive Index Prism.
- 15. Spectrometer Grating (Normal incidence method).
- 16. Potentiometer low range ammeter calibration.
- 17. Comparison of viscosity's Poisuille's flow method.
- 18. Liquid lens Refractive index of liquid.

Reference Books:

- 1. C. L. Arora, Practical Physics, S.Chand& Co., 2009.
- 2. R. K. Shukla and Anchal Srivastava, Practical Physics, New Age International Publishers, 1st edition, 2013.
- 3. D. Chattopadhyay and R.C. Rakshit, An Advanced Course in Practical Physics, New Central Book Agency, 10th edition, 2011.

E-Resources:

- 1. <u>http://ocw.mit.edu/courses/#physics</u>
- 2. http://hyperphysics.phy-astr.gsu.edu
- 3. <u>https://www.coursera.org</u>
- 4. <u>http://nptel.ac.in/courses</u>

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020 For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme : B. Sc Physics Course Title : **ELECTRONICS EXPERIMENTS** Core Practical : II : I 2 Hours/Week Subject Code : 18UPH2CP2

Year

Semester: II

2 Credits

Any Fifteen of the Following Experiments

1. Junction diode characteristics.

- 2. Zener diode characteristics.
- 3. Construction of Half and Full wave rectifier.
- 4. Construction of 5V regulated power supply using IC.
- 5. Bridge Rectifier.
- 6. 12 0 (-12) Dual IC regulated power supply
- 7. Zener Regulated Power supply.
- 8. Study of CRO- Lissajous figures.
- 9. Verification of truth tables of AND, OR and NOT gates.
- 10. Verification of truth tables of NAND, NOR and EX-OR gates.
- 11. NAND as universal gate.
- 12. NOR as universal gate.
- 13. Voltage Doubler.
- 14. Construction of Half adder and half subtractor.
- 15. Verify ohms law.
- 16. Transistor characteristics CE mode.
- 17. Construction of Astable Multivibrator.
- 18. Single stage RC-coupled amplifier.

Reference Books:

- 1. L. Arora, Practical Physics, S.Chand& Co., 2009.
- 2. R. K. Shukla and Anchal Srivastava, Practical Physics, New Age International Publishers, 1st edition, 2013.
- 3. Chattopadhyay and R.C. Rakshit, An Advanced Course in Practical Physics, New Central Book Agency, 10th edition, 2011.
- 4. C.C.Ouseph, U.J.Rao and V.Vijayendran, Practical Physics and Electronics, S. Viswanathan Printers and Publishers, 2008.

E-Resources:

- 1. <u>http://ocw.mit.edu/courses/#physics</u>
- 2. http://hyperphysics.phy-astr.gsu.edu
- 3. <u>https://www.coursera.org</u>
- 4. <u>http://nptel.ac.in/courses</u>

For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme	: B. Sc Physics	Subject Code : 18UPH4CP3
Course Title	: GENERAL EXPERIMENTS- II	
Core Practical	: III	
Year	: II	Semester : IV
3 Hours/Week		3 Credits

Any fifteen of the following experiments:

- 1. Young's modulus uniform bending (Optic lever Method).
- 2. Young's modulus Cantilever Oscillations.
- 3. Rigidity Modulus Static torsion (Scale and telescope).
- 4. Metre bridge TCR.
- 5. Melde's string method Determination of frequency.
- 6. Thermal conductivity Lee's disc method.
- 7. Spectrometer-dispersive power of the prism.
- 8. Determination of Band gap energy of a Thermister.
- 9. Spectrometer Hollow prism.
- 10. Spectrometer i-d curve.
- 11. Newton's ring Radius of curvature
- 12. Field along the axis of the $coil Determination of B_H$.
- 13. Spectrometer Small angled prism.
- 14. Young's modulus Koenig's Method.
- 15. Sonometer A.C frequency.
- 16. Polarimeter Specific rotation.
- 17. Joules calorimeter Specific heat capacity of liquid.
- 18. Air Wedge Thickness of the Wire.

References/E-Resources:

- 1. H. J. Pain, The Physics of Vibrations and Waves, John Wiley, (2005), 6th Edition
- 2. David Halliday, Robert Resnick and Jearl Walker, Fundamentals of Physics, John Wiley & Sons , New Delhi , 9th Edition , 2010
- 3. <u>http://ocw.mit.edu/courses/#physics</u>
- 4. <u>http://hyperphysics.phy-astr.gsu.edu</u>
- 5. <u>https://www.coursera.org</u>
- 6. http://nptel.ac.in/courses/115106090/

For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme	: B. Sc Physics	Course Code : 18UPH4CP4
Course Title	: ANALOG AND DIGITAL EXPERIM	ENTS
Core Practical	: IV	
Year	: II	Semester: IV
2 Hours/Week		2 Credits

Any fifteen of the following experiments:

- 2. OP-AMP Inverting and non-inverting amplifier.
- 3. Parameters of OP-AMP.
- 4. OP-AMP Integrator and Differentiator.
- 5. Low pass filter OP-AMP.
- 6. High pass filter OP-AMP.
- 7. Band pass filter OP-AMP.
- 8. Unity Gain follower- OP-AMP.
- 9. Parallel resonant circuit.
- 10. Series resonant circuit.
- 11. Astable multivibrator -555 Timer.
- 12. Two Input OR and AND gates using diode and transistor.
- 13. Construction of Full adder.
- 14. Construction of Full subtractor.
- 15. 4-bit Binary adder.
- 16. RS Flip Flop.
- 17. Verification of De Morgan's theorem.
- 18. Analog to Digital converter.

References/E-Resources:

- 1. H. J. Pain, The Physics of Vibrations and Waves, John Wiley, (2005), 6th Edition
- 2. David Halliday, Robert Resnick and Jearl Walker, Fundamentals of Physics, John Wiley & Sons , New Delhi , 9th Edition , 2010
- 3. <u>http://ocw.mit.edu/courses/#physics</u>
- 4. <u>http://hyperphysics.phy-astr.gsu.edu</u>
- 5. <u>https://www.coursera.org</u>
- 6. http://nptel.ac.in/courses/115106090/

For candidates admitted from academic year 2014-15 onwards Under New CBCS

Programme	: B. Sc Physics	Subject Code : 18UPH6CP6
Course Title	: ADVANCED EXPERIMENTS	
Core Practical	: V	
Year	: III	Semester: VI
3 Hours/Week		3 Credits

Any fifteen of the following experiments:

- 1. Spectrometer -i -i' curve
- $2. \quad Spectrometer-Cauchy's \ constant$
- 3. Spectrometer Hartmann's formula
- 4. Spectrometer Solar spectrum
- 5. Newton's Rings Refractive Index of Liquid
- 6. Ballistic Galvanometer Figure of merit
- 7. Potentiometer High range voltmeter
- 8. Self inductance of coil Anderson's bridge
- 9. Hartley oscillator
- 10. Colpitt's oscillator
- 11. FET characteristics
- 12. UJT Characteristics
- 13. Band gap energy of the semiconductor
- 14. Young's modulus uniform bending (Optic lever)
- 15. Young's modulus non-uniform bending (Optic lever)
- 16. Laser Diffraction Determination of wave length of the diode laser
- 17. Resolving power of a lens using He-Ne laser
- 18. Verification of Malus law using diode laser

For candidates admitted from academic year 2014-15 onwards Under New CBCS

Programme	: B. Sc Physics	Subject Code: 18UPH6CP7
Course Title	: MICROPROCESSOR AND C - PROGRAMMING	G IN PHYSICS
Core Practical	: VI	
Year	: III	Semester: VI
3 Hours/Week		3 Credits

Any Fifteen of the following experiments:

MICROPROCESSOR PROGRAMMING

- 1. Program to transfer data between memories
- 2. Program to find the 1's and 2's complement of 8 bit data
- 3. Program to perform 8 Bit Addition and Subtraction
- 4. Program to perform 8 –Bit Ascending order
- 5. Program to perform 8 –Bit Descending order
- 6. Program to perform 8 –Bit Multiplication
- 7. Program to perform 16 Bit Addition
- 8. Program to convert Binary to Gray and Gray to Binary
- 9. Program to find the smallest and largest in a data Array

C - PROGRAMMING

- 10. Determine the Square root of the Quadratic equations
- 11. Matrix multiplication of a given 2 x 2 matrices
- 12. Conversion of temperature from ${}^{0}C$ to ${}^{0}F$ and ${}^{0}F$ to ${}^{0}C$
- 13. Determination of 'G' by Boy's Method
- 14. Young's Modulus Uniform bending
- 15. Spectrometer Refractive index & Dispersive power of prism
- 16. Newton's Rings Radius of curvature
- 17. Determination of Velocity of light Foucault's Rotating Mirror Method
- 18. Estimation of Average Global Solar Radiation

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020 For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme: B. Sc Maths & Chemistry Course Title: I B. Sc Maths, Semester - I & II B.Sc Chemistry, Semester - III ALLIED THEORY PHYSICS - I

Allied : 1 Year : I&II 4 Hours/Week Semester : I&III 4/5 Credits

UNIT – I: GRAVITATION

Determination of 'G' by Boy's method – Potential and field due to a solid sphere – Variation of 'g' due to altitude and depth.

ELASTICITY

Bending moment – Determination of 'Y' by non uniform bending – Torsional oscillations – use of Torsional Pendulum to determine 'n' and 'I'

UNIT – II: OPTICS

Newton's rings – Determination of refractive index of a liquid – Plane diffraction grating – Determination of wavelength – Dispersive power of a grating – Polarization – Production and analysis of elliptically and circularly polarized light.

UNIT – III: THERMODYNAMICS

Joule Thomson effect – Adiabatic demagnetization – Liquefaction of Helium – Meissner effect – Properties of Liquid Helium I and II – Super conductivity. Measurement of Radiation from SUN – Pyroheliometer.

UNIT - IV: MAGNETISM AND ELECTRICITY

Field along the axis of along solenoid – tangent Galvanometer – Moving coil galvanometer. Self induction – Mutual induction – Alternating current – LR and LCR series, circuits – Impedance and Resonance.

UNIT – V: RELATIVITY

Michelson Morley experiment – Postulates of Special Theory of Relativity – Lorentz transformation – Time dilation and length contraction – Addition of Velocities – Mass Energy relation.

TEXT BOOK:

- 1 R. Murugasen, Modern Physics, S. Chand & Co.1990 Edition:2nd, Reprint
- 2 Brijlal & Subramaniam, Optics, S. Chand & Co ,1990,Edition:2

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020 For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme: B. Sc Maths & ChemistrySubject Code: 18UMA2AL2&18UCH4AL4Course Title: I - B. Sc Maths, Semester - II & II - B.Sc Chemistry, Semester - IV
ALLIED THEORY PHYSICS - IIAllied: 2Year: I & II4 Hours/WeekSemester : II&IV
4/5 Credits

UNIT - I: QUANTUM OPTICS

Einstein's photo electric equation – Photo Voltaic Cell – Photomultiplier – Production and properties of X rays – X ray spectrum –Mosley's law – Compton effect – Derivation of formula for 'd'.

UNIT - II: LASER PHYSICS

Population Inversion – Methods of producing population inversion – Ruby Laser – Helium-Neon Laser – CO laser, Semiconductor laser - Uses of Lasers.

UNIT - III: QUANTUM MECHANICS

Principle Uncertainty – wave function - Probability Density – Schrodinger's one dimensional equation – Eigen function and Eigen values – Particle in a box – One dimensional Potential well

UNIT - IV: SEMICONDUCTOR PHYSICS

PN Junction– Zener Diode – VI Characteristics – Action of a transistor – Transistor characteristics (Common Base and Common Emitter) – Transistor as an Amplifier – Switching action of a Transistor.

UNIT - V: INTEGRATED ELECTRONICS

Operational Amplifier – Block diagram – Operation Amplifier as an Adder and Subtractor -Integrator and Differentiator. OR, AND & NOT gates – Demorgan's theorems – NAND gate as a universal gate.

TEXT BOOK:

1.Author : R. Murugasan Book Name: Optics Publication: S. Chand & Co Year: 1990 Edition:2 2. Author : Brijlal & Subramanian Book Name: Modern Physics Publication: S. Chand & Co Year: 1990 Edition:2

References/E-Resources:

- 1. H. J. Pain, The Physics of Vibrations and Waves, John Wiley, (2005), 6th Edition
- David Halliday, Robert Resnick and Jearl Walker, Fundamentals of Physics, John Wiley & Sons, New Delhi, 9th Edition, 2010
- 3. <u>http://ocw.mit.edu/courses/#physics</u>
- 4. <u>http://hyperphysics.phy-astr.gsu.edu</u>
- 5. <u>https://www.coursera.org</u>6. <u>http://nptel.ac.in/courses/115106090/</u>

SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS) COIMBATORE -641 020 For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme : B. Sc Maths & Chemistry Course Title : I - B. Sc Maths, Semester – 1 & 2 and II - B. Sc Chemistry, Semester – 3 & 4 ALLIED PHYSICS PRACTICAL

Allied Practical: I Year :I& II 2 Hours/Week Semester : II & IV 2 Credits

Any Fifteen of the following experiments:

- 1. Compound pendulum.
- 2. Young's Modulus Non uniform bending.
- 3. Young's modulus Uniform bending.
- 4. Spectrometer Solid prism.
- 5. Spectrometer Grating.
- 6. Potentiometer Low range ammeter calibration.
- 7. Potentiometer Voltmeter calibration.
- 8. Rigidity modulus Torsional pendulum.
- 9. Rigidity modulus Static torsion.
- 10. Meter bridge.
- 11. Deflection magnetometer Field along the axis of the coil.
- 12. Newton's rings.
- 13. Deflection magnetometer Tan C position.
- 14. Zener diode Characteristics.
- 15. Transistor characteristics CE mode
- 16. Verification of truth tables AND, OR and NOT gates.
- 17. NAND as universal gate.
- 18. OP- AMP adder and subtractor.

Reference Books:

- 1. C. L. Arora, Practical Physics, S.Chand& Co., 2009.
- 2. R. K. Shukla and Anchal Srivastava, Practical Physics, New Age International Publishers, 1st edition, 2013.
- 3. D. Chattopadhyay and R.C. Rakshit, An Advanced Course in Practical Physics, New Central Book Agency, 10th edition, 2011.

E-Resources:

- 1. http://ocw.mit.edu/courses/#physics
- 2. http://hyperphysics.phy-astr.gsu.edu
- 3. https://www.coursera.org
- 4. http://nptel.ac.in/courses

For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme : B. Sc ChemistryCourse Code:18UCH3NM1Course Title : NME-INSTRUMENTAL METHODS OF CHEMICAL ANALYSIS-IYear : II2 Hours/Week2 Credits

UNIT - I

Ultraviolet and Visible Spectrophotometry: Radiation sources – Monochromators – Detectors – Double beam spectrophotometer. **Infrared Spectrophotometer**: The range of IR radiation – Instrumentation - Radiation sources –Monochromators – Single beam and Double beam Spectrophotometer.

UNIT - II

Raman Spectroscopy: Characteristics and properties of Raman lines – Difference between Raman spectra & IR spectra – Instrumentation – Source of light – Filters – Sample holders – Spectrograph.

UNIT – III

Fluorescence and Phosphoresence Spectrophotometry: Fluorescence and Phosphorescence – Theory – Singlet and Triplet states – Instrumentation - Single beam and Double beam Fluorimeters - Spectrofluorimeters – Instruments for Phosphorimetric analysis – Comparison of Fluorimetry and Phosphorimetry.

TEXT BOOK

1. Gurdeep Chatwal and Anand, Instrumental Methods and Analysis, Himalaya Publishing House, Mumbai,1979, Edition: 1.

REFERENCE BOOK

1. B.K.Sharma, Instrumental Methods of Chemical analysis, Goel Publishing House, Meerut, Edition: 3rd.

For candidates admitted from academic year 2018-19 onwards Under New CBCS

Programme : B.Sc.,/BA., Course Title : NME - Energy Auditing Year : II 2 Hours/Week

Semester : IV

Course Code: 18UPH4NM2

2 Credits

UNIT – I: Energy

Energy resources - Different forms of energy - New and renewable energy - Primary and secondary energy - Conventional and non-conventional energy - Energy conservation and its importance - Energy and environmental concerns - Energy scneario and energy crisis.

UNIT – II: Energy Audit & Management

General philosophy - Need of energy audit and management - Definition and objective of energy audit - Types of energy audits - Preliminary & Detailed energy audit methodology Industrial, commercial and residential audit planning - General principles of energy management - Energy management strategy - Energy audit instruments

UNIT – III: Energy conservation

Energy conservation in domestic and industrial sectors Energy conservation in

- ✓ Thermal system
- ✓ Electrical system
- ✓ Lighting system

TEXT BOOK

1. Albert Thumann and Willaim J. Younge, Hand book of energy audits, The Fairmont Press Inc., 2007, 7th Edition.

2. W.C. Turner, Energy management hand book, The Fairmont Press Inc., 2001, Edition: 4th

REFERENCE BOOK

1. G.D. Rai, Non-conventional energy sources, Khanna Publishers, 2011, Edition: 4th.

For candidates admitted from academic year 2014-15 onwards Under New CBCS

Programme : B. Sc Physics

Subject Code: 18UPH6CPR

Course Title : **Project Work**