

Action Taken Report (2020-2021)

Feedback collected, analysed and the board careful scrutinized and decided to execute the following revisions in near future.

- . More industry-oriented elective courses may be offered.
- Some of the core courses need to be revamped with recent developments. .
- New topics such as asymmetric synthesis, metal-catalysed cross-coupling reactions, . retrosynthesis, energy materials, macrocyclic synthesis, and drug delivery materials may be included.
- "Medicinal chemistry" and "Reactions & Reagents" courses to be revised with recent developments in the field.

Chairman-BoS

Dr. M. SEKAR MA.M.Sc., M.Phil., P.G.D.C.A., Ph.D., F.I.C.S., Associate Professor of Chemistry Sri Ramakrishna Mission Vidyalaya College of Arts and Science COIMBATORE-641 020.T.N.India.

inc

Chairman-IQAC SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE COIMBATORE - 641 020.

Department of Chemistry Sri Ramakrishna Mission Vidyalaya College of Arts & Science (An Autonomous College Affiliated to Bharathiar University, Coimbatore) SRKV Post, Coimbatore - 641020.

ACTION TAKEN REPORT ON THE CURRICULUM FOR THE YEAR 2019-20

S.No	Feedback	Action Taken
1.	Introduce more core courses in the curriculum	Two new core courses were introduced.
2.	Introduce bridge courses in the first year.	The newly added core courses in the first year designed in a way to connect the gap between higher secondary and graduation.
3.	Introduce industrial oriented elective courses.	Six new industrial based elective courses were introduced in the final year. i. Industrial Chemistry ii. Environmental Chemistry iii. Polymer Chemistry iv. Dye Chemistry v. Bio-Chemistry vi. Introduction to Nano-Technology and Applications
4.	Introduce bridge courses in the first year.	The newly added core courses in the first year designed in a way to connect the gap between higher secondary and graduation.
5.	Introduce topics focusing on chemistry behind practical in the appropriate semesters in the theory courses.	The curriculum was shuffled accordingly to learn the practical courses and the theory behind practical courses coherently.
6.	Students may be encouraged to register massive online open courses (MOOC) and due weightage may be given for their accomplishments.	Necessary initiatives were taken to encourage the students to register MOOC and due weightage shall be given.
7.	More elective courses may be offered.	Two pools (each pool contains three courses) of six elective courses were introduced.

Date: 04-12-2020

HoD of Chemistry

Dr. M. SEKAR M.A.,M.Sc.,M.Phil.,P.G.D.C.A.,Ph.D.,F.I.C.S., Associate Professor of Chemistry Sri Ramakrishna Mission Vidyalaya College of Arts and Science COIMBATORE-641 020.T.N.India.

Principal

SRI RAMAKRISOVA MISSION VIDVALAYA COLLEGE OF ARTS AND SCIENCE COIMBATORE-641020.

Percentage of revision executed in the syllabus

Name of the Programme: B.Sc Chemistry

Month & Year of Revision: May 2020

S.No.	Course Title	Course Code	Percentage of Revision				
1	General Chemistry - I	20UCH1C01	75				
2	General Chemistry - II	20UCH1C02	35				
3	General Chemistry - III	20UCH2C03	55				
4	General Chemistry - IV	20UCH2C04	100				
5	Inorganic, Organic and Analytical Chemistry	20UCH3C05	70				
6	Physical, Organic and Analytical Chemistry	20UCH4C06	30				
7	Coordination Chemistry	20UCH5C07	35				
8	Organic Chemistry	20UCH5C08	35				
9	Electrochemistry	20UCH5C09	25				
	Elective courses from Group A						
10	i) Industrial Chemistry	20UCH5EA1	100				
10	ii) Environmental Chemistry	20UCH5EB1	100				
	iii) Polymer Chemistry	20UCH5EC1	100				
11	Inorganic Chemistry	20UCH6C12	20				
12	Stereochemistry, Free radicals, and biomolecules	20UCH6C13	50				
13	Physical Chemistry	20UCH6C14	20				
	Elective courses from Group B						
14	Dye Chemistry	20UCH6EA2	100				
	Biochemistry	20UCH6EB2	100				
	Introduction to nano-technology and applications	20UCH6EC2	100				
15	Elective Practical 2: Industrial Chemical Analysis	20UCH6EP2	20				
16	Modular Course: Chemistry for Entrepreneurship	20UCH6MC1	100				

Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of Revision / Modification
General Chemistry-I	20UCH1C01	Ι	Rutherford's nuclear model of atom- Experiment, postulates and objections. Black body Radiation, Planck's quantum theory of radiation, Photoelectric effect with Einstein's explanation and Compton effect. Bohr's model of the atom-postulates, calculation of radius of Bohr's orbits, velocity of electron and energy of electron, significance of negative value of energy of electron. Bohr's Explanation of hydrogen spectrum, Sommerfiled's extension of Bohr's theory and shortcomings of Bohr's Theory.	Basic mathematical concepts:Basic SI andderived units, inter conversion of units,significant figures, scientific notation,exponential numbers and logarithms.Basic ideaon differential and integral calculus.Graphplotting - slopes, maxima and minima.Basic Chemical concepts:Mole calculations.Concentration terms.Equivalent weight – acid,base, salt, ions and oxidising - reducing agents,principle of volumetric analysis.Self-study:Differential and integral calculus applications inchemistry.Applications of mole concept	(20%)
		Π	Wave mechanical model - derivation of de Broglie's equation, verification by Davisson and Germer experiment. Schrodinger wave equation- derivation, application to hydrogen atom, physical significance of Ψ and Ψ^2 . Charge cloud concept and shapes of s, p, d and f orbitals. Origin, description and salient features of quantum numbers (n, l and m). Zeeman effect and spin quantum number. Pauli's exclusion principle and Hund's rule, aufbau principle, (n + 1) rule, stability of half-filled and completely filled orbitals.	Classification and Nomenclature of organic compounds: Homologous series and its characteristics, functional groups. Systems of naming organic compounds- trivial, derived and IUPAC rules. IUPAC system of nomenclature of aliphatic hydrocarbons with mono and poly functional groups, alicyclic, bicyclic, spiro and aromatic compounds. Self-study: IUPAC naming of hydrocarbons in petrochemistry and hydrocarbons containing	Reshuffled to Unit I of 20UCH2C03 (10%)

		both double and triple bonds.	
	Description of the latest IUPAC periodic table, periodicity and periodic properties- Atomic radii- covalent radii, multiple bond radii, hybridisation and atomic radius, variation of atomic radius along period and group, ionic radii- size of cation and anion, comparison with neutral atom, isoelectronic ions, variation of ionic radius along a group and a period. Ionisation energy -first and	both double and triple bonds. Electronic effects and reaction intermediates: Polar, non-polar molecules, electron donating and withdrawing groups. Polar effects- inductive, mesomeric, electromeric, resonance, hyperconjugation and steric effects. Homolytic and heterolytic fission. Reactive intermediates- Carbocations, carbanions, free radicals and their structures and stabilities. Carbenes, Nitrenes and benzyne (electronic structure only).	Existing content reshuffled to unit II of 20UCH1C02 (5%)
	successive, factors governing, variation along groups and II period. Electron affinity- factors governing, variation along periods and halogen group. Electronegativity – variation along a period and group, Mulliken -Jaffee concept- oxidation state, hybridization, charge and bond order.	 Self-study: a) Influence of polar effect on the strength of organic acid and bases. b) Comparison of stability of reaction intermediates 	
IV	Classification of organic compounds, functional group, homologous series. Systems of naming organic compounds- trivial, derived and IUPAC. Rules of IUPAC system of nomenclature of acyclic compounds, IUPAC system of nomenclature of complex organic compounds- aliphatic hydrocarbons, with mono and poly functional groups.	Laboratory hygiene and safety: Storage and handling of chemicals-corrosive, inflammable, explosive, toxic, poisonous and carcinogenic chemicals. First aid procedures for laboratory accidents involving toxic and poisonous chemicals, electrical shock, cuts and burns from hot objects. Filtration, Heating and stirring techniques. Handling of Glassware: Cleaning agents and	Existing content reshuffled to Unit II of 20UCH1C01 Converted into II UNIT (20%)
	Polar, non-polar molecules, electron donating and withdrawing groups. Polar effects-inductive, mesomeric, electromeric	cleansing methods. Interchangeable glass ground joint apparatus and their advantages. Calibration and grading of pipette, burette and volumetric	

and hyperconjugation. Homolytic and heterolytic fission- free radicals, carbocations, carbanions and their structures and stabilities. Electrophiles and nucleophiles.	flask. Effect of temperature on volumetric glassware. Self-study: Weighing principle in chemical balance and single pan balance.	
Alkanes- preparation of alkanes by direct reduction of alkyl halides, Sabatier- Senderens reaction, Wurtz reaction, decarboxylation and Kolbes electrolysis. Relationship between structure and physical properties. Chemical properties of alkanes- isomerisation, aromatization, pyrolysis, combustion, controlled oxidation, nitration, sulphonation, halogenation with relative reactivities of halogens. Alkenes-general methods of preparation of alkenes- dehydrohalogenation, dehydration of alcohols, dehalogenation of vicinal dihalides, controlled reduction of alkynes, Electrophilic addition of alkenes- hydrogenation, (Markovnikov's rule and Kharasch effect with HBr), halohydrin formation, hydration, hydroboration, Oxidative cleavage reactions- ozonolysis and hydroxylation, Substitution reaction of propene at low and high temperature. Tests for alkenes.	Principles and techniques of inorganic qualitative analysis: Semi-micro qualitative analysis - anions (interfering and non- interfering), reactions of some common anions (carbonate, sulphide, sulphate, nitrate, halides, oxalate, borate and phosphate), principle of preparation of sodium carbonate extract and elimination of interfering anions. Classification of cations into groups, reaction of Pb ²⁺ , Cu ²⁺ , Al ³⁺ , Ni ²⁺ , Ca ²⁺ , Ba ²⁺ , Mg ²⁺ and NH4 ⁺ cations, group reagents. Applications of Solubility, solubility product principle and common ion effect in group separation of cations. <i>Self-study:</i> Preparation of solution for cation testing on semimicro scale.	Existing content reshuffled to unit V of 20UCH1C02. (20%)

(75%)

Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of Revision / Modification
General Chemistry - II	20UCH1C02	Ι	Chemical bonding- Ionic bonding- factors influencing the formation of ionic bond- characteristics of ionic compounds-Born- Haber cycle. Covalent bond - factors influencing the formation covalent bond- partial ionic character in covalent bond and calculation of percentage ionic character- Fajan's rule and coordinate bond-basics and examples, BF ₃ -NH ₃ , Metal-Ligand and AlCl ₃ . Concept of resonance-resonance energy- resonance structures of O ₃ , CO, N ₂ O, CO ₃ ²⁻ and SCN ⁻ . Molecular Orbital theory (MOT)- postulates. M.O. diagram for H ₂ , He ₂ , He ₂ ⁺ , N ₂ , O ₂ and NO with their bond order and magnetic character. Valence Shell Electron Pair Repulsion (VSEPR) theory- geometry of BeF ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O, PCl ₅ , SF ₆ , CO ₂ and SO ₂ . Hydrogen bonding- conditions, types, reasons for solubility of NH ₃ and alcohols, abnormal boiling point of water and low density of ice, significance of hydrogen bonding in the structure of DNA, the physical state of water and H ₂ S.	 its limitations, Sommerfeld atom model and hydrogen spectrum. Quantum theory of radiation – Photoelectric effect, Black body radiation and Compton Effect. Dual nature of matter - de Broglie equation and Heisenberg's uncertainty principle. Hund's rule, sequence of energy levels (aufbau principle) and its limitations. Pauli's exclusion principle and Hund's rule, aufbau principle, (n + 1) rule, stability of half-filled and completely filled orbitals. Self-Study: a) Bohr's explanation of hydrogen spectrum. b) Sommerfeld's extension of Bohr's theory and shortcomings of Bohr's theory. 	Existing content reshuffled to unit III and IV of 20UCH1C02 with revision. (no change in revised content)

II	Alkadienes- classification, conjugated	Periodicity and properties: Description of the	Existing
	dienes-preparation from diol, alkyne,	latest IUPAC periodic table. Atomic radii, ionic	content
	dihalide and alkane. Chemical properties-1,	radii, covalent radii, ionisation energy (IE),	reshuffled to
	2 and 1,4 elecrtophilic addition, homo and	electron affinity (EA) and electronegativity (EN)	unit III of
	intermolecular cyclisation, Diels-Alder	- variation along period and group. Ionic radii-	20UCH2C03
	reaction. Stability of conjugated dienes,	comparison of size of cation and anion, neutral	(= 0/)
	Preparation of poly butadiene, Buna-N and	atom and isoelectronic species. Ionization	(5%)
	Buna-S rubbers.	energy-first and successive, factors affecting IE.	
		Electron affinity-factors affecting EA.	
	Alkynes- preparation from gem and	Electronegativity - Pauling's, Mullikan's and	
	vicinal dihalides, tetrahalides, lower	Allred Rachow'sscales. Percentage of ionic	
	alkynes. Chemical properties- acidity of	character. Variation of EN with oxidation state,	
	alkynes, catalytic and chemical reductions,	hybridisation, charge and bond order.	
	hydrohalogenation, hydration,		
	hydroboration, oxidation with neutral	Self-Study:	
	KMnO ₄ , ozonolysis and polymerization	Sey Sinny.	
	(dimer, trimer and tetramer), Tests for	Electronegativity calculations using Pauling,	
	alkynes.	Mulliken and Allred-Rochow methods.	
	Alkyl halides-preparation from		
	alkanes, alkenes, alkynes, alcohols and by		
	halide exchange and Hunsdiecker reaction.		
	Chemical properties- reaction with aqueous		
	alkali, alcoholic alkali (Saytzeff and		
	Hoffmann orientation). Aliphatic		
	nucleophilic substitution-S _N 1, S _N 2 and SN ⁱ		
	mechanisms, Relative reactivities of alkyl		
	halides towards S_N1 and S_N2 mechanisms.		

III	Cycloalkanes-synthesis by internal Wurtz	Chemical bonding-I: Ionic bonding- conditions for	Existing
	reaction, Freund's method, decarboxylation	the formation of ionic bond, characteristics of ionic	content
	and Dieckmann's condensation, Chemical	compounds.Lattice energy, Born-Lande equation	reshuffled to
	properties - substitution and ring opening	(derivation not required), factors affecting lattice	unit-V of
	reactions of cyclopropane and cyclobutane.	energy, Born-Haber cycle-enthalpy of formation of	20UCH1C02
	Baeyer's strain theory, Sache-Mohr theory.	ionic compounds and stability.Covalentcharacter in	
	Bueyer's strain theory, suche mont theory.	ionic compounds- Fajan's rules, comparison of	(5%)
	Aromaticity - Huckle's rule and its	solubility, melting points, and thermal stability of	
	applications to benzene, naphthalene,	typical ionic compounds.	
	antharacene, phenantharene, [10]annulene,		
	[12]annulene pyridine, pyrrole,	Covalent bond: characteristics of covalent	
	cyclopropenyl cation, tropylium cation and	compounds, formation of BeCl ₂ , BCl ₃ , CH ₄ , H ₂ O	
	cyclopentadienyl anion.	and C_2H_4 . Partial ionic character. Coordinate	
	Mashanian of anomatic electronhilis	bond- NH ₄ Cl, BF ₃ -NH ₃ , $[Co(NH_3)_6]Cl_3$ and	
	Mechanism of aromatic electrophilic	AlCl ₃ .	
	substitution reactions of benzene and	Self-Study:	
	toluene- halogenation, nitration and sulphonation. Friedel-Crafts alkylation and		
		<mark>a) Solubility and thermal stability of ionic</mark>	
	acylation of benzene.	compounds of alkali and alkaline earth	
		metals. b) Comparison of the characteristics of	
		ionic and coordinate compounds.	
 IV	Gas Laws - Boyle's, Charles's, Gay Lusac's,		Existing
	Avgadro's, Dalton's and Graham's.	arrangement of electrons in molecules,	content
	Postulates of kinetic theory of gases-	hybridization of atomic orbitals and geometry of	shuffled to
	derivation of kinetic gas equation-derivation	molecules. VSEPR model-effect of bonding and	unit-III of
	of gas laws, and ideal gas equation.	nonbonding electrons on the structure of	20UCH2C04
	Maxwell's distribution of molecular	molecules, illustration of structures by VSEPR	
	velocities (derivation not necessary). Root	model- BeF ₂ , BF ₃ , CH ₄ , NH ₃ , H ₃ O ⁺ , SF ₄ , ClF ₃ ,	(5%)
	mean square velocity, average velocity and	ICl ₄ ⁻ , ICl ₂ ⁻ , IF ₇ , XeF ₂ , XeOF ₂ , XeF ₄ , XeF ₆ .	
	most probable velocity, Mean free path,	Molecular orbital theory- MO diagrams of	
	Collision diameter and collision frequency	diatomic and simple polyatomic molecules N ₂ ,	
		$O_2, C_2, B_2, F_2, CO, NO$ and their ions - bond order	
		and stability of molecules.	
		-	

	 Weak Chemical Forces - Hydrogen bonding, Vander Waals forces. Self-Study: a) The importance of lone pair-lone pair and lone pair-bond pair electron interactions in determining structure of molecules and illustration. b) Calculation and comparison of bond order and determining stability of homo- and heterodiatomic molecules. 	
Colloids- classification, preparation and purification. Origin of charge of colloidal particles, stability of colloids. Properties of Colloids- Tyndall effect, Brownian movement, Helmoltz electrical double layer, elctrophoresis, eletroosmosis, coagulation, protective action of sols (gold number). Applications- blue colour of the sky, clarification of water, formation of delta, electrical precipitation of smoke. Solid state-crystalline and amorphous solids-differences between them-definitions of space lattice, Unit cell, Crystal systems, Bravais lattices. Weiss and Miller indices, Number of atoms in simple, face centred and body centred cubic cells, Structure of CsCl and NaCl. Liquid crystals- types, properties and applications.	 Alkanes: Alkanes-preparation by the reduction of alkyl halides, Sabatier- Senderens reduction. Wurtz reaction, decarboxylation and Kolbe's electrolysis. Relationship between structure and physical properties. Chemical properties - isomerisation, aromatization, pyrolysis, combustion, controlled oxidation, nitration, sulphonation, relative reactivity and selectivity of halogenations. Cycloalkanes:Synthesis by internal Wurtz reaction, Freund's method, decarboxylation and Dieckmann's condensation. Chemical properties - substitution and ring opening reactions of cyclopropane and cyclobutane. Baeyer's strain and Sache-Mohr theories. Self-Study: a) Comparision of boiling point, melting point and density of alkanes. b) Relative stability of ring compounds. 	Existing content moved to unit I & II of 20UCH2C04. (10%)
Total Percentage of course content Modified	1/Revised	25%

Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of Revision / Modification
General Chemistry III	20UCH2C03	I	Metallurgy: Concentration of ores- Gravity separation, Froth floatation, Magnetic separation, Chemical separation, Calcination and Roasting. Reduction of free metal- smelting, using CO, Alumino-thermic, Electrolytic reduction, Purification - electrorefining, zone refining, thermal decomposition-Mond's and Van Arkel processes. Ellingham diagram for oxidation of metals to metal oxides. <i>s-Block</i> elements: Properties- factors affecting lattice energy of ionic solids, factors affecting and variation of hydration energy of ions in periodic table. Diagonal relationship (Li & Mg, Be & Al) in the periodic table. Extraction of Lithium. Complexes of alkali metals-the wrap around complexes and their biological importance.	 Atomic structure – II: Wave mechanical model verification by Davisson and Germer experiment. Schrodinger wave equation- derivation, physical significance of Ψ and Ψ². Charge cloud concept and shapes of s, p, d and f orbitals. Nodes and nodal planes. Origin, description and salient features of quantum numbers (n, l and m). Zeeman effect and spin quantum number. Self-Study: a) Problems on de Broglie's equation. b) Filling of electrons in polyelectronic atoms 	Existing content moved in to new course 20UCH3C05 (5%)
		Π	<i>p-Block</i> elements: Variation of properties - valency, atomic radius, ionisation energy, electron affinity, electronegativity, metallic character, oxidising and reducing properties, diagonal relationship between boron & silicon and inert pair effect. Oxides - Classification based on chemical behaviour and oxygen content. Hydrogen peroxide - preparation, properties, structure and uses (including volume calculation). Oxy acids of Sulphur -Preparation, properties and uses of	<i>s-Block</i> elements -Properties – Lattice energy of ionic solids, hydration of ions, relative stability of different oxidation states, ionic conductance. Complexes of alkali metals - wrap around complexes. Comparison of Li and Be with their family members. Diagonal relationship between Li and Mg, Be and Al. Chemistry of sodamide and calcium carbide. Manufacturing and setting of Portland cement. <i>Self-Study:</i>	Existing content moved in to new course 20UCH3C05 (5%)

III	sulphuric acid, Caro's acid, Marshall's acid and oleum.	 a) The factors favoring the formation of ionic compounds by s-block elements. b) Uses of s-block metals 	Existing
	<i>d</i> -block elements: Electronic configuration, general characteristics - metallic character, atomic volume and atomic radii, ionisation potential, oxidation states, formation of coloured compounds, magnetic properties, formation of complexes and catalytic properties. Extraction of Vanadium and Tungsten.Chemistry of titanium dioxide, titanium tetra chloride, vanadium pentoxide, ammonium molybtate, molybdenum blue, tungsten carbide, tungstic acid and tungsten bronzes	Alkadienes- classification, conjugated dienes- preparation from diol, alkyne, and dihalide. Chemical properties - 1,2 and 1,4 electrophilic addition, homo and intramolecular cyclisation, Diels-Alder reaction. Alkynes- preparation from gem and vicinal dihalides, tetrahalides, lower alkynes. Chemical properties-acidity of alkynes, catalytic and chemical reductions, hydrohalogenation, hydration, hydroboration, oxidation with KMnO4, ozonolysis and polymerization (dimer, trimer and tetramer), Tests for alkynes. Self-Study:Stability of conjugated dienes.	Existing content moved to unit IV of new course 20UCH3C05 (no change in revised content)
IV	Alcohols: General classification, monohydric alcohols - classification, nomenclature - common, IUPAC and carbinol. Preparation of alcohols with mechanisms - hydrolysis of alkyl halides, hydration of alkenes into primary, secondary and tertiary alcohols, hydroboration, oxymercuration/demercuration of alkenes, reduction of aldehydes, ketones & esters, and hydrolysis of esters. Manufacture of ethyl alcohol from molasses and starch, rectified spirit absolute alcohol and denatured alcohol. Physical properties - boiling points	Alkyl halides-preparation from alkanes, alkenes, alkynes, alcohols, Hunsdiecker reaction and halide exchange. Chemical properties- reaction with aqueous and alcoholic alkali (Saytzeff and Hoffmann orientation).Aliphatic nucleophilic substitution-S _N 1, S _N 2 and S _N i mechanisms with stereochemistry, relative reactivities of 1°, 2°, and 3° alkyl halides towards S _N 1 and S _N 2 mechanisms. Self-Study:Application of Hoffmann and Saytzeff rules.	Existing content moved to unit V of new course 20UCH3C05 (5%)

	and solubility with reference to hydrogen bonding and hydrophobic nature. Chemical properties - acidic nature, reaction with- carboxylic acids, acid halides and anhydrides, hydrogen halides and phosphorous halides. Iodoform test, oxidation, dehydrogenation and dehydration. Distinction among primary, secondary and tertiary alcohols. Interconversion of alcohols-Lower primary to higher primary, primary to secondary, secondary to tertiary alcohols. Breath analysis test. Phenols: Classification and nomenclature, Preparation- from sulphonic acids, diazonium salts, aryl halides, sodium tests of carboxylic acids and cumene. Physical properties and chemical properties- Acidic character, effect of substituents on the acidity of phenol, reaction with neutral ferric chloride, sodium, zinc dust and ammonia. Oxidation, esterification and williamsons synthesis. Electrophilic substitution- halogenation, nitration, sulphonation, Friedel-Craft's alkylation and acylation, phthalein fusion, mechanisms of reactions - coupling, Reimer-Tiemann, Kolbe-Schmidt, Liebermann and Gattermann. Dihydric phenols-Dakin's reaction, Houben -Hoesch reactionand Fluorescein formation. Tests for phenols. <i>Total Percentage of course content Modified</i>	Aromaticity - Huckle's rule. Aromaticity of benzene, naphthalene, antharacene, phenantharene, [10]annulene, [14]annulene, pyridine, pyrrole, cyclopropenyl cation, tropylium cation and cyclopentadienyl anion. Mechanism of aromatic electrophilic substitution reactions of benzene and toluene - halogenation, nitration, sulphonation, Friedel-Crafts alkylation and acylation. Activating and deactivating substituents, orientation and ortho/para ratio, side chain reactions (chlorination & oxidation) of toluene. Self-Study:Orientation of electrophiles on mono substituted benzene.	Existing content moved to unit V of new course 20UCH4C06 (5%)	
Total Percentage of course content Modified/Revised				

Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of Revision / Modification
General 20UCH2CO4 Chemistry IV	I	<i>f</i> -Block elements: Position in the periodic table, lanthanides - electronic configuration, oxidation states, lanthanide contraction - cause and consequences, complex formation, occurrence and extraction from monazite, separation of monazite by ion exchange method. Compounds of lanthanum - oxides and halides, uses of lanthanides. Actinides: general features of actinides - electronic configuration, oxidation states, ionic radius, actinide contraction, colour of ions and formation of complexes. Separation of Np, Pu and Am from uranium, trans uranic elements. Similarities and differences between lanthanide and actinides.	Solid state-crystalline and amorphous solids - space lattice, unit cell, crystal systems, Bravais lattices. Weiss and Miller indices, number of atoms in simple, face centred and body centred cubic cells. Structure of CsCl and NaCl. Packingof ions in solids - radius ratio, coordination number in ionic crystals. Liquid crystals - types, properties and applications.Crystal defects - stoichiometric defects - Schottky and Frenkel defects. Non - stoichiometric defects-metal excess and metal deficiency defects. Self-study: Coordination numbers of cations and anions in ionic crystals from radius ratio	Existing content moved to unit-V of 20UCH6C12 (7%)	
		Π	Nuclear Chemistry: Composition of nucleus, properties of α , β and γ rays, nuclear forces (meson theory) - nuclear stability- mass defect, binding energy, packing fraction, n/p ratio and magic numbers. Isotopes, isobars, isotones and isomers and mirror nuclei (basic idea only). Detection of isotopes by Aston's mass spectrograph method. Radioactive disintegration- modes of decay, rate of disintegration, half-life period, average life and radioactive disintegration series. Nuclear fission- atom bomb, nuclear power	Ideal solutions: Vapour pressure- compositiondiagrams of solutions. Raoult's law, positive andnegative deviations from the law.Solubility of gases in liquids - Henry's law andits relationship with Raoult's law. Lowering ofvapour pressure - thermodynamic derivation forelevation of boiling point and depression offreezing point. Relationship between osmoticpressure and vapour pressure. van't Hoff'stheory of dilute solutions.Colloids-classification,preparationandpurification.Properties-Tyndalleffect,	Existing content moved to unit-IV of 20UCH6C12 (10%)

generator, nuclear fusion - hydrogen bomb and stellar energy, uses of radioactive isotopes- in medicine, analytical chemistry and carbon dating.IIIThermodynamics: Systems, Surroundings, Boundary, Intensive and Extensive properties. Concept of heat and work. State and Path functions, Thermodynamic processes.First law of thermodynamics: Statement, definition of internal energy and enthalpy. Heat capacity - at constant volume and pressure and their relationship. Joule's law,	 layer, electrophoresis, electro-osmosis, coagulation and protective action of sols (goldnumber). Self-study: Applications of Colloids Gas Laws - Boyle's, Charles's, Gay Lusac's, Avgadro's, Dalton's law of partial pressure and Graham's law of diffusion. Postulates of kinetic theory of gases-derivation of kinetic gas equation-derivation of gas laws and ideal gas equation. Maxwell's distribution of molecular velocities, root mean square velocity, average velocity and most probable velocity (derivation not necessary). Mean free path, collision 	Existing content moved to unit II and III of new course 20UCH4C06 (7%)
 Joule-Thomson coefficient and inversion temperature. Calculation of w, q, dU and dH for the expansion of ideal gases under isothermal and adiabatic conditions for reversible process. Thermochemistry: Standard state, standard enthalpy of formation. Hess's law of heat summation and its applications. Heat of reaction at constant pressure and volume. Enthalpy of combustion, Enthalpy of 	diameter and collision frequency. Law of vander Waal's equation and critical state. Relationship between critical constants and vanderWaal's constants. Self-study: Problems based on kinetic gas equation.	
 neutralisation. Bond dissociation energy and its calculation from thermo-chemical data, temperature dependence of enthalpy. Kirchhoff's equation. IV Second law of thermodynamics: Need for the law, different statements, Carnot cycle 	Ethers -IUPAC nomenclature, preparation- dehydration of alcohols and Williamson synthesis. Chemical properties - formation of	Existing content moved to

	and its efficiency, Carnot theorem.	oxonium salts, etherate and peroxides, cleavage	unit IV of
	Thermodynamic scale of temperature.	by acids and halogenation. Determination of	new course
	Thermodynamic scale of temperature.	alkoxy group by Ziesel's method. Crown ethers	20UCH4C06
	Concept of entropy: entropy as a state	– 12 crown 4, and 15 crown 5.	2000114000
	function, entropy as a function of V & T and	Epoxides- Preparation, chemical reactions – acid	(20 %)
	P & T, entropy change in physical change,	hydrolysis, HBr, C2H5OH/ C2H5ONa, RNH2 and	
	Clausius inequality, entropy as criteria of	RMgX.	
	spontaneity and equilibrium. Entropy		
	change in ideal gases and mixing of gases,	Thioethers - IUPAC nomenclature, preparation-	
	entropy change in natural processes. Gibbs	from alkyl halide, mercaptans and alkenes.	
	function (G) and Helmholtz function (A) as	Chemical reactions- metal salts, alkyl halides,	
	thermodynamic quantities, A and G as	oxidation, hydrolysis and halogenation.	
	criteria for thermodynamic equilibrium and	Self-study:	
	spontaneity, their advantage over entropy		
	change. Variation of G, and A, with P, V,	a) Preparation, properties and uses of	
	and T.	anisole. b) Orientation of epoxides in ring opening.	
		b) Orientation of epoxiaes in ring opening.	
	Third law of thermodynamics: Nernst heat		
	theorem, statement and concept of residual		
	entropy, evaluation of absolute entropy from		
	heat capacity data.		
V	Chemical equilibrium: Reversible	p-Block Elements: General characteristic of 13	Existing
	reactions, nature and characteristics of	•	content
	chemical equilibrium, law of mass action,	silicon. Diagonal relationship between boron and	moved to
	equilibrium constant in terms of	silicon. Chemistry of diborane, boron nitride,	unit V of new
	concentration and partial pressure.	borazine, boron trioxide, boric acid, carbon	course
	Thermodynamic derivation of law of		20UCH4C06
	chemical equilibrium, van't Hoff equation,		20000111000
	van't Hoff equation in terms of Le	Self-study: Various types of silicates	(no change in
	Chatelier's principle - the effects of change		revised
	of concentration, pressure and temperature		content)
	and Haber's process.		

			Thermodynamic derivation of colligative properties: Molal depression of freezing point, Elevation of boiling point, the usefulness in determining molar masses. Osmosis - principle, Measurement of osmotic pressure, Calculation of molecular weight and applications of reverse osmosis. <i>Total Percentage of course content Modified</i> /	Revised	44%
Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of Revision / Modification
Inorganic, Organic and Analytical Chemistry	20UCH3C05	I-V		New Course introduced with shuffling the existing content with 30% of revised content.	30%
			Total Percentage of course content Modified/	Revised	30%
Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of Revision / Modification
Physical, Organic and Analytical Chemistry	20UCH3C06	I-V		New Course introduced with shuffling the existing content with 30% of revised content.	30%
			Total Percentage of course content Modified/	Revised	30%
Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of Revision / Modification

Coordination Chemistry	20UCH5C07 III	Applications of coordination compounds in quantitative analysis - gravimetric estimation of nickel using DMG and aluminum using oxine, estimation of hardness of water using EDTA.Structures and functions of chlorophyll and hemoglobin. Metal carbonyls-general methods of preparation, nature of M-CO bond, structure of Ni(CO)4, Fe(CO)5, Fe2(CO)9, Mn2(CO)10 and Co2(CO)8	Magneticproperties-typesofmagneticbehaviour,spin-onlyformula,calculationofmagnetic moment,experimental determinationofmagnetic susceptibility – Gouymethod.Applications-complexometrictitrationsprinciple and applications.Qualitative separationof silver and mercury, copper and cadmium ions.Gravimetric estimation of nickel using DMG andaluminiumusing oxine.Estimation of hardnessof water using EDTA.Self-study:Qualitative analysis of Cobalt, Zincand Iron.	10%
	IV	Calculation of number of atoms in simple cubic (SC), face centered cubic (FCC) and body centered cubic (BCC) unit cells. Symmetry in crystals - symmetry operations and symmetry elements - plane of symmetry, axis of symmetry and centre of symmetry.Symmetry elements of a cubic crystal. Semiconductors - intrinsic and extrinsic - n-type and ptype. Electron gas theory and band theory of metals	Organometallic compounds- introduction - definition and classification of organometallic compounds based on bond type. Nature of Metal- Carbon bond. Metal carbonyls - 18 electron rule, electron count of mononuclear and binuclear complexes of 3 <i>d</i> series. General methods of preparation, properties and structure of Ni(CO)4, Mn ₂ (CO)9, Fe(CO)5, Co ₂ (CO)8. Self-study: Preparation, properties and uses of Zeise's salt and Ziegler-Natta Catalyst.	10%

V	Alloys - simple mixtures, solid solutions, substitutional and interstitial alloys. Hume - Rothery ratios and their applications. Structure of the ionic crystals - AX type - NaCl, CsCl and ZnS -(zinc blende and wurtzite structures), AX2 type - CaF2 and TiO2. Limiting radius ratio rule- coordination number and shape of the ionic crystals. Defects in crystal structures: stoichiometric defects - Schottky and Frenkel defects. Non - stoichiometric defects-metal excess and metal deficiency defects.	and toxicity of trace elements: Cr, Mn, Cu, Ar, Hg, Cd, Fe, Mo. Se. Zn, I, Pb. Role of Na ⁺ , K ⁺ , Mg ²⁺ , and Ca ²⁺ in biological system. Structure and functions ofhemoglobin and chlorophyll. Structure and functions of carbonic anhydrase.Nitrogen fixation in atmosphere.	15%
	Total Percentage of course content Modified	l/Revised	35 %

Course Title	Course	Unit	Existing Content	Modified/Revised content	% of
	code				Revision/
					Modification
Organic	20UCH5C08	I	Preparation and properties of benzene	Aliphatic and Aromatic Aldehydes &	20%
Chemistry			suphonic acid and suphanilic acid.	Ketones-structure, reactivity and preparation.	
			Preparation and bacterostatic action of	Mechanism of nucleophilic addition reaction -	
			sulphanilamide. Phenol - preparation,	ammonia and its derivatives. Mechanisms of	
			resonance structures,	aldol (Simple & Cross), benzoin condensation,	
			bromination, nitration, oxidation,	Knoevenagel condensation, Claisen-Schmidt,	
			reduction, Schotten-Baumann, phthalein	Perkin, Cannizzaro, Wittig and haloform	
			fusion and	reactions. Oxidation with Ag ₂ O, KMnO ₄ , PCC,	
				and PDC. Reduction with LiAlH4, and NaBH4.	

	coupling reactions. Mechanisms of Reimer-Tiemann and Kolbe-Schmidt reactions.Tests for phenol.Preparation and properties of o- cresol, catechol, resorcinol and pyrogallol.		
Π	Preparation and properties of formic and acetic, benzoic, oxalic and malonic acids.Action of heat on formic, acetic, oxalic, malonic and succinic acids. Mechanism of hydrolysis of esters by BAc2 and AAc2. Diethyl malonate - preparation and synthesis of acetic acid, adipic acid, cinnamic acid, glycine and malonyl urea from diethyl malonate. Ethylacetoacetate - preparation and synthesis of succinic acid, crotonic acid, butanone, 4-methyl uracil and antipyrine from ethylacetoacetate.	Carboxylic acids- preparation and properties of formic, acetic, benzoic, oxalic, malonic and succinic acids. Relative acidity of carboxylic acids. Action of heat on formic, acetic, oxalic, malonic and succinic acids. Mechanism of hydrolysis of esters by B _{AC} 2 and A _{AC} 2. Diethyl malonate – preparation. Synthesis of acetic acid, adipic acid, cinnamic acid, glycine and malonyl urea from diethyl malonate. Ethylacetoacetate– preparation. Synthesis of succinic acid, crotonic acid, butanone, 4-methyl uracil and antipyrine from ethyl acetoacetate. Self-study:Preparation and properties of maleic and fumaric acids.	5%
IV	Heterocycliccompounds- preparationandreactionsofpyrroleandpyridine.Comparison of basicitiesofpyridine andpyrrole.Synthesisandreactionsquinoline,isoquinolineandindole.Vitamins - classification, sourcesanddeficiencydiseases.Terpenoids-isolationandisoprenerule.Structural elucidation andsynthesisofgeraniolAlkaloids-structuralelucidationsynthesisofconiineandnicotine.	Heterocyclic compounds– preparation, basicity,electrophilic & nucleophilic substitution,oxidation and reduction reactions of pyrrole,furan, thiophene and pyridine. Synthesis ofquinoline (Skraup), isoquinoline (Bischler-Napieralski) and Indole (Fischer-Indole) –electrophilic and nucleophilic reactions.Terpenoids-isolation and isoprene rule.Structural elucidation and synthesis of α-terpeniol.Self-study:Structural elucidation and synthesisof geraniol.	10%

Course Title	Course	Unit	Existing Content	Modified/Revised content	% of
	code				Revision /
					Modification
Electrochemistry	18UCH5C07	I	Ohm's law and electrical units. Electrolysis – Faraday's law of electrolysis. Conductance of electrolytes - specific conductance, equivalent conductance and molar conductance – experimental determination of molar conductance. Types of electrolytes. Variation of specific and molar conductance with dilution. Transport number and ionic mobility's – determination of transport number – Hittorf's and moving boundary methods. Kohlrausch's law and its applications. Abnormal mobilities of hydrogen and hydroxyl ions.	Ionic mobility - Ohm's law and electrical units. Arrhenius theory of electrolytic dissociation and its limitations. Electrolysis – Faraday's laws of electrolysis. Conductance of electrolytes. Variation of specific and molar conductance with dilution. Ionic mobility – abnormal mobilities of hydrogen & hydroxyl ions and Walden's rule. Transport number- determination by Hittorf's and moving boundary methods. Kohlrausch's law and its applications. Applications of conductance measurements - determination of solubility product, degree of dissociation, ionic product of water and conductometric titrations – acid-base and precipitation. Self-study: Types of electrolytes, Ostwald's dilution law and its limitations.	5%
		II	Arrhenius theory of electrolytic dissociation and its limitations. A qualitative discussion of	Inter-ionic effects - Debye-Huckel theory of strong electrolytes. Debye-Falkenhagen and Wein effects. Activity and activity coefficient	5%
			interionic forces and their influence on	of strong electrolytes (definition only).	
			conductance. Applications of	Dissociation of weak acids and bases –	
			conductance measurements - determination of	relative strengths. pH and pH scale, common ion effect and solubility product - applications	

	solubility product, degree of dissociation, ionic product of water and conductometric titrations – acid-base and precipitation. Activity and activity coefficient of strong electrolytes (definition only)	
	IDissociation of weak acids and bases – relative strengths. pH - definition, common ion effect and solubility product - applications of solubility product principle. Buffer solutions – types of buffers and buffer action - Henderson's equation. Hydrolysis of salts - hydrolysis constant and degree of hydrolysis of salts - weak bases and strong acids , weak acids and weak bases.	Electromotive force - electrochemical cells - galvanic cells - cell terminology - representation of cell - calculation of EMF of the cell. Reversible and irreversible cells. Types of electrodes –metal-metal ion electrode, gas electrode- standard hydrogen electrode, amalgam electrode, metal-insoluble salt electrode-calomel and Ag/AgCl, oxidation- reduction electrodes. Single electrode potential - determination. Nernst equation for electrode and cell potentials. Electrochemical series and its applications. Thermodynamic concept of electrode potential. Relation between EMF and thermodynamic quantities ΔG , ΔH , ΔS and their significance.
I	V Electromotive force - electrochemical cells - galvanic cells - cell terminology - representation of cell - calculation of EMF of the cell. Reversible and irreversible cells -	Self-study:Weston standard cellConcentration cells - types - derivation of EMF of concentration cells with and without transference. Liquid Junction potential - definition (derivation not necessary) and its elimination. Application of EMF measurements

	Weston standard cell. Experimental determination of EMF of a cell. Single electrode potential - determination. Electrochemical series - applications. Thermodynamic significance of electrode potential. Relation between EMF and thermodynamic quantities $\Delta G, \Delta H, \Delta S$ and their significance. Nernst equation for electrode and cell potentials. Types of electrodes - metal ion electrode, amalgam electrode, metal insoluble salt electrode (calomel and $Ag/AgCl$),oxidation reduction electrode, gas electrode (standard hydrogen electrode)	 potentiometric titrations - acid base, precipitation and redox titrations – determination of solubility of a sparingly soluble salt, determination of pH using glass, quinhydrone electrode. Self-study: Determination of pH using hydrogen electrodes.
V	Concentration cells - types - derivation of EMF of concentration cells with and withouttransference. Liquid Junction potential - definition (derivation not necessary) andanditselimination. Application of EMF measurements - potentiometric titrations - acid base, precipitation and redox titrations - determination of solubility of a sparingly soluble salt, determination of pH using glass, quinhydrone and hydrogen electrodes. Commercial cells - Acid storage battery. Rechargeable cells	Metallic coating – introduction, anodic and cathode coatings. Coating processes – metal cladding and hot dipping – galvanishing, tinning, electroless plating. Electroplating and its applications. Corrosion – electrochemical principle of rusting of iron, prevention of corrosion-barrier, sacrificial and cathodic protections. Passivity of metals. Commercial cells – Acid storage battery. Rechargeable cells – nickel cadmium and lithium ion cells. Fuel cells – Hydrogen-oxygen fuel cell.15%Self-study: Hydrocarbon-oxygen fuel cell

 nickel cadmium and lithium ion cells. Fuel cells. Electrochemical principle of rusting of iron. 	
Total Percentage of course content Modified/Revised	27 %

Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of Revision / Modification
Inorganic Chemistry	20UCH6C12	I	Covalency and oxidation number, difference between oxidation number and valency. Rules for calculating oxidation number.Oxidation and reduction, common oxidising agents and reducing agents.Equivalent weight of common oxidising and reducing agents. Balancing redox equations using oxidation number method. Extraction of Mn, Co and Ni.Preparation, properties and uses of potassium permanganate, potassium dichromate and ferrous sulphate.	Oxidation number - covalency and oxidation number, difference between oxidation number and valency. Rules for calculating oxidation number. Oxidation and reduction, common oxidizing agents and reducing agents. Balancing redox equations using oxidation number method. Oxides: Classification based on oxygen content and chemical behavior. H ₂ O ₂ : preparation, structure, and properties. <i>Self-Study:</i> Calculation of volume strength and uses of H ₂ O ₂ .	10%
		Π	Occurrence, extraction, chemical properties and uses of boron. Preparation, properties, structure and uses of diborane, sodium borohydride, boric acid, borax and boron nitride-borax bead test. Borazine-preparation, chemical properties and structure – comparison of borazine with benzene.	Noble gases – occurrence, isolation, inertness and uses. Clathrate compounds. Preparation, structure and properties of XeF ₂ , XeF ₄ , XeF ₆ , XeO ₃ and XeOF ₄ . Interhalogen compounds – preparation, structure, properties and uses of ICl, IBr, ICl ₃ , IF ₅ , and IF ₇ . <i>Self-Study: Preparation, properties, uses and</i> <i>structures of ClF, and ClF</i> ₃ .	5%

I ULUL FEICEILLUYE DI CUUISE CUILEILI NUULI LEW NEUISEU		III	Compounds of silicon-quartz, tridymite, cristobalite and carborundum. Silicates- types, structures and uses. Isolation of noble gases from liquid air-clathrate compounds-types and properties. Preparation, properties and structures of – XeF ₂ , XeF ₄ , XeF ₆ , XeO ₃ and XeOF ₄ Inter halogen compounds: preparation, properties, uses and structures of-ICl, IBr, ICl ₃ , IF ₅ and IF ₇ .	Bronsted concept - conjugate acid - base pair, Lewis concept. Relative strength of acids and bases-effect of solvent, levelling effect-polarity and dielectric constant. Hard and Soft Acids, Bases (HSAB) principle, and their applications. Non-aqueous solvents -classification of solvents, characteristic properties of a solvent. Physical properties, chemical reactions, advantages and limitations of liquid ammonia, and liquid sulphur dioxide. Self-Study: Relative strength of acids and bases –effect of electron releasing and electron withdrawing substituents, oxidation number of central atom and resonance effect.	20%
---	--	-----	--	--	-----

Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of Revision/ Modification
Stereochemistry, Freeradicals and Biomolecules	20UCH6C13			dissymmetric, asymmetric, chiral and achiral molecules with two stereogenic	10%

epimers, optical isomerism in lactic acid and tartaric acid. R-S configuration.	synthesis.Relativeandabsoluteconfiguration.Sequencerules–R/Snomenclature.Geometrical isomerism, E/Znomenclature.Self-study:Determination of configuration of geometrical isomers by physical and chemical methods.	
Conformational analysis - distinction between conformation and configuration.Conformations and potential energy diagrams of ethane and n-butane. Conformations of cyclohexane- chair, half chair, boat and twist forms. Methyl cyclohexane, conformations and stabilities of 1,2 – dimethylcyclohexane, 1,3 – dimethylcyclohexane and 1,4 – dimethylcyclohexane, conformations in cyclohexanol, cyclohexane-1,3- diol and cyclohexane-1,4,-diol.	Conformationalanalysis-distinctionbetween conformation and configuration, Conformational analysis of ethane, n-butane and cyclohexane. Axial–equatorial inter conversion-conformation and stabilities of methylconversion-conformation and stabilities of methylcyclohexane, 1,2–dimethyl cyclohexane, 1,2–dimethyl cyclohexane, 1,3–dimethyl cyclohexane and 1,4–dimethyl cyclohexane. Conformations in cyclohexanol, cyclohexane-1,3- diol and cyclohexane-1,4,-diol.Self-study:Cis-trans isomerismin substituted cycloalkanes	5%
Free radicals-classification, generation of free radicals, detection of free radicals, configuration of free radicals and relative stabilities of alkyl free radicals. Stability of triphenylmethyl free radical, reactions involving free radicals-polymerization, allylic bromination by NBS, autoxidation,	Reaction intermediates -free radicals - classification, generation, detection, and configuration. Relative stabilities of alkyl and triphenylmethyl free radicals. Reactions - polymerization, allylic bromination by NBS, autoxidation, Sandmeyer, Gomberg and Ullmannreactions. Generation of carbenes and nitrenes.	5%

Sandmeyer reaction, Gomberg and Ullmann reactions.	<i>Self-study</i> : Reactions involving carbene and nitrene-Reimer Tiemann reaction and Hoffmann rearrangement.	
Addition reactions of alkenes - electrophilic, nucleophilic and free radical addition reactions. Mechanisms of addition of H ₂ , halogens and hydrogen halides to carbon – carbon double bond systems, Markovnikov's rule and Kharasch-peroxide effect, cis- hydroxylation and hydroboration. Synthetic uses of diazomethane and perbenzoic acid.	Carbohydrates – classification, preparation and properties of glucose and fructose. Cyclic structures - pyranose and furanose forms. Mutarotation and its mechanism. Configuration of monosaccharides, epimerisation, chain lengthening and chain shortening of aldoses. Inter conversions of glucose and fructose. Disaccharides – reactions and structure elucidation of sucrose. Self-study: Polysaccharides-structure of starch and cellulose, industrial uses of cellulose	15%
Carbohydrates- classification - elucidation of open chain structure of glucose and fructose, mutarotation, interconversions between glucose and fructose, reducing and non-reducing sugars. Amino acids and proteins: Amino acids-classification and general methods of preparation and properties. Peptide synthesis by Bergmann method, proteins-classification, primary and secondary and tertiary structures. Colour test for proteins.	 Amino acids -classification, essential and non-essential amino acids, preparation and properties of α-amino acids. Synthesis of peptides, end-group analysis. Proteins – classification, primary and secondary structures. Nucleic acids – DNA and RNA-composition, structure of DNA and its role in heredity and DNA replication. Self-study: Denaturation and renaturation of proteins, colour test for proteins 	15%

		Toti	al Percentage of course content Modified/R	levised	50%
Course Title	Title Course code Unit Existing Content		Existing Content	Modified/Revised content	% of Revision / Modification
Physical Chemistry	20UCH6C14	I	Phase rule – Definition of phase, component and degrees of freedom. Derivation of phase rule. Application of phase rule to one component systems – phase diagrams of H ₂ O, CO ₂ and sulphur systems. Application of phase rule to two component systems – lead-silver and zinc-magnesium systems. Phase diagrams for two component liquid systems – completely miscible and partially miscible (Phenol-water, triethylamine-water and nicotine- water) systems. Principle of steam distillation. Nernst distribution law and its applications.	Phase rule – definition of phase, component and degrees of freedom. Derivation of phase rule. Application to one-component systems – H ₂ O, CO ₂ and sulphur. Application to two component systems – lead-silver and zinc- magnesium. Two component liquid systems - Phenol-water, triethylamine-water and nicotine-water. Distillation of immiscible liquids-steam distillation. <i>Self-study: Phase diagrams of Bi-Cd and KI-</i> <i>H₂O systems</i>	5%
		Π	Chemical Kinetics: Definition of rate and rate constant dimensions of rate and rate constant. Order and molecularity – differences. Derivation of rate constants for zero, first and second order reactions. Examples for fractional and higher order reactions. Various methods of determining order of a reaction. Effect of temperature on reaction rate,	Chemical Kinetics - definition of rate and rate constant, dimensions of rate and rate constant. Order and molecularity – differences. Derivation of rate constants and half-life of zero, first and second order reactions. Pseudo first-order reaction – acid catalyzed ester hydrolysis. Examples for fractional and higher order reactions. Various methods of determining order of a reaction. Arrhenius equation – calculation of energy of activation. Complex reactions - consecutive, reversible,	5%

V	Arrhenius equation – calculation of energy of activation. Photochemical reactions. Difference	parallel and chain reactions – definition and examples.Self-study: Effect of temperature on reaction rate.Photochemical reactions -difference between	10%
	between photochemical and thermochemical reactions. Laws of photochemistry – Lambert Beer's, Grotthus Draper law and Stark Einstein's law. Quantum yield – definition and experimental determination (actinometry). Photochemical reactions of low and high quantum yields. Kinetics of hydrogen-bromine and hydrogen- chlorine reactions. Photosensitization and quenching. Definition of chemiluminescence, fluorescence and phosphorescence.	photochemical and thermochemical reactions. Laws of photochemistry – Lambert Beer's, Grotthus Draper, and Stark Einstein's laws. Quantum yield – definition and types. Photochemical reactions of low and high quantum yields.Kinetics of hydrogen-chlorine and hydrogen-bromine reactions. Basic idea on fluorescence, phosphorescence, chemiluminescence and bioluminescence. Group theory - Symmetry elements and symmetry operation. Group-requirements and types-abelian and non-abelian. Point group of water and ammonia. Group multiplication table of C _{2V} point group. Self-study: Group multiplication table of C _{3V} point group.	
	Total Percentage of course content Modified/R	evised	20%

Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of Revision / Modification
Industrial Chemical Analysis	20UCH5EP2	-		New Course Created by splitting the existing course 19UCHCH6CP4 with 25%	25%

	t <			of new content.	
Total Percentage of course cou	ntent Modified/Revised				25%
Industrial Chemistry	1			New Course pool created and one of the	
Environmental Chemistry	20UCH5EL1			course chosen by the students will be	100%
Polymer Chemistry		x	4	delivered.	¢
	Total	Percentage of cour	rse content Modified/Rea	vised	100%
Dye Chemistry					
Biochemistry				New Course pool created and one of the	
Introduction to nanochemistry and applications			course chosen by the students will be delivered.	100%	
	Total	Percentage of cour	rse content Modified/Rea	vised	
Modular Course: Chemistry for Entrepreneurship	20UCH6C15			New Course Introduced	100%
	Total Per	centage of course of	content Modified/Revise	đ	100%

Mom (M Seker) HoD of Chemistry

Dr. M. SEKAR M.A.M.Sc. M.Phil., P.G.D.C.A., Ph.D., F.I.C.S., Associate Professor of Chemistry Sri Ramakrishna Mission Vidyalay College of Arts and Science COIMBATORE-641 020.T.N. India.

Action Taken Report: (2018-19)

Suggestions from the feedback	Action taken		
Introduce physical chemistry experiments in the "Allied practical chemistry"	Implemented		
course.	Implemented		
The course "Computational Chemistry			
and Molecular Modelling" may be	Implemented		
introduced.			
Provide training on competitive	Implemented		
examinations.			
Cultural events may be conducted in the	Implemented		
department.			
Hands-on-training programmes			
instruments may be provided.			
Industrial collaboration for final year			
project works may be considered.			
	Will be implemented		
Conduct more association meetings on			
contemporary research and industrial			
demands.			

0

HoD of Chemistry

Dr. A. CHANDRAMOHAN

M.Sc.,M.Phil.,Ph.D.,D.C.H.I, Associate Professor & Head, College of Arts and Science (Autonomous) Coimbatore - 641 020.

\/ Principal SRI RAMAKRISHNA MISSION VIDYALAVA COLLEGE OF ARTS AND SCIENCE

COIMBATORE-641020.

Action Taken Report: (2017-18)

Suggestions from the feedback	Action taken
An outcome-based component may be introduced.	Implemented
The existing course NME-I may be revised and the course "Health awareness and Management" may be introduced as NME-II.	Implemented
The courses "General Chemistry – I" and "General Chemistry – II" may be revised.	Implemented
 Industrial visits in curriculum may be incorporated. More courses on employability may be offered. Provisions for preparedness on competitive examinations. New elective courses may be introduced in order to meet the current requirements of chemical industries. 	Will be implemented

Ø

HoD of Chemistry

Dr. A. CHANDRAMOHAN M.Sc.,M.Phil.,Ph.D.,D.C.H.I., Associate Professor & Head, Department of Chemistry Sri Rama, et boa Mission Vidyalaya College of Exception Science (Autonomous)

V SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE

COIMBATORE-641020.

Action Taken Report: (2016-17)

Suggestions from the feedback	Action taken
The course "medicinal chemistry" may	Implemented
be enriched.	
 "Nanoscience and Green chemistry" course may be introduced as elective course. More elective courses may be incorporated. 	Implemented
 Job related courses may be provided. Industrial visits may be added as a course. Provide training on competitive examinations. "Computational Chemistry" course may be offered. 	Will be implemented.

1) andre

HoD of Chemistry

Dr. A. CHANDRAMOHAN M.Sc., M.Phil., Ph.D., D.C.H.L,

M.Sc.,M.Phil.,Ph.D.,D.C.H.I., Associate Professor & Head, Department of Chemistry Sri Ramakrishna Mission Vidyalaya College of Arts and Science (Autonomous) Combatore - 641 020.

Principal

SR! RAMAKRISHNA MISSION VIDYALAYA College of Arts and Science Coimbatore-641020.

Department of Chemistry Sri Ramakrishna Mission Vidyalaya College of Arts & Science (An Autonomous College Affiliated to Bharathiar University, Coimbatore) SRKV Post, Coimbature - 641020.

Action Taken Report: (2015-16)

Suggestions from the feedback	Action taken
More number of value-added courses	Implemented
may be introduced to enhance	
employability.	-
The course "spectroscopy" (UG) is to be	Implemented
enriched.	
A self-study core course "Basic Concepts	Implemented.
in Chemistry" may be introduced for UG	
students to enhance the creativity and	
critical thinking.	
 Industrial visits in curriculum 	Will be implemented
may be included.	
 Provisions for preparedness on 	
competitive examinations in	
chemistry	
 More elective courses may be incomparated 	
incorporated.	

@ Maredie m

HoD of Chemistry

Dr. A. CHANDRAMOHAN M.Sc.,M.Phil.,Ph.D.,D.C.H.I, Associate Professor & Head, Department of Chemistry Sri Ramakrishna Mission Vidyalaya College of Arts and Science (Autonomous) Combatore - 641 020. Principal

SRI RAMAKRISHNA MISSION VIDYALAYA College of Arts and Science Coimbatore-041020.