SRI RAMAKRISHNA MISSION VIDYALAYA COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS), COIMBATORE - 641 020

Name of the Programme: B.Sc Chemistry

Month &Year of Revision:May 2020

S.No.	Course Title	Course Code	% of Revision
1	Core: General Chemistry - I	20UCH1C01	75
2	Core: General Chemistry - II	20UCH1C02	35
3	Core: General Chemistry - III	20UCH2C03	55
4	Core: General Chemistry - IV	20UCH2C04	100
5	Core: Inorganic, Organic and Analytical Chemistry	20UCH3C05	70
6	Core: Physical, Organic and Analytical Chemistry	20UCH3C06	30%
7	Core: Coordination Chemistry	20UCH5C07	35%
8	Core: Organic Chemistry	20UCH5C08	35%
9	Core: Electrochemistry	20UCH5C09	25%
10	Elective: Industrial Chemistry	20UCH5EA1	(100%)
11	Elective: Environmental Chemistry	20UCH5EB1	100%
(12)	Elective: Polymer Chemistry	20UCH5EC1	(100%)
13	Core: Inorganic Chemistry	20UCH6C12	20%
14	Core: Stereochemistry, Free radicals, and biomolecules	20UCH6C13	50%
15	Core: Physical Chemistry	20UCH6C14	20%
16	Elective: Dye Chemistry	20UCH6EA2	100%
(17)	Elective: Bio Chemistry	20UCH6EB2	(100%)
18	Elective: Introduction to Nanochemistry& Applications	20UCH6EC2	100%
19	Elective Practical: Industrial Chemical Analysis	20UCH6CP4	20%
20	Modular Course: Chemistry for Entrepreneurship	20UCH6MC1	100%

Note:

No.of Courses offered by the Department (A)

No.of Courses revised in BoS (>20% Revision) (B)	
	20
Formula for Syllabus revision: (B/A)*100	
- · · ·	60.06%

Course Title	Course	Unit	Existing Content	Modified/Revised content	% of
	code				Revision /
					Modification
Concert	2011/01	т		Deris methods the Deris CL and	(200/)
General	200CHIC01	1	Rutherford's nuclear model of atom-	Basic mathematical concepts: Basic SI and	(20%)
Cnemistry-1			Experiment, postulates and objections.	derived units, inter conversion of units,	
			Black body Radiation, Planck's quantum	significant figures, scientific notation,	
			theory of radiation, Photoelectric effect	exponential numbers and logarithms. Basic idea	
			with Einstein's explanation and Compton	on differential and integral calculus. Graph	
			effect. Bohr'smodel of the atom-postulates,	plotting - slopes, maxima and minima.	
			calculation of radius of Bohr's orbits,	Basic Chemical concepts: Mole calculations.	
			velocity of electron and energy of electron,	Concentration terms. Equivalent weight – acid,	
			significance of negative value of energy of	base, salt, ions and oxidising - reducing agents,	
			electron. Bohr's Explanation of hydrogen	principle of volumetric analysis.	
			spectrum, Sommerfiled's extension of		
			Bohr's theory and shortcomings of Bohr's	Self-study:	
			Theory.	Differential and integral calculus applications	
				in chemistry. Applications of mole concept	
		II	Wave mechanical model - derivation of de	Classification and Nomenclature of organic	Reshuffled
			Broglie's equation, verification by Davisson	compounds: Homologous series and its	to Unit I of
			and Germer experiment. Schrodinger wave	characteristics, functional groups. Systems of	20UCH2C03
			equation- derivation, application to	naming organic compounds- trivial, derived and	(100/)
			hydrogen atom, physical significance of Ψ	IUPAC rules.	(10%)
			and Ψ^2 . Charge cloud concept and shapes of		
			s, p, d and f orbitals. Origin, description	IUPAC system of nomenclature of aliphatic	
			and salient features of quantum numbers (n,	hydrocarbons with mono and poly functional	
			1 and m). Zeeman effect and spin quantum	groups, alicyclic, bicyclic, spiro and aromatic	
			number. Pauli's exclusion principle and	compounds.	
			Hund's rule, aufbau principle, $(n + 1)$ rule,	Solf-study.	
			stability of half-filled and completely filled	Sey-suny.	
			orbitals	IUPAC naming of hydrocarbons in	
				petrochemistry and hydrocarbons containing	

			both double and triple bonds.	
	ш	Description of the latest IUPAC periodic	Electronic effects and reaction intermediates:	(5%)
	111	table, periodicity and periodic properties-	Polar, non-polar molecules, electron donating	
		Atomic radii- covalent radii, multiple bond	and withdrawing groups. Polar effects-	
		radii, hybridisation and atomic radius,	inductive, mesomeric, electromeric, resonance,	
		variation of atomic radius along period and	hyperconjugation and steric effects. Homolytic	
		group,ionic radii- size of cation and anion,	and heterolytic fission. Reactive intermediates-	
		comparison with neutral atom, isoelectronic	Carbocations, carbanions, free radicals and their	
		ions, variation of ionic radius along a group	structures and stabilities. Carbenes, Nitrenes	
		and a period. Ionisation energy -first and	and benzyne (electronic structure only).	
		successive, factors governing, variation	Self-study:	
		affinity factors governing variation along	2) Influence of polar effect on the strength	
		periods and halogen group	of organic acid and bases.	
		Electronegativity – variation along a period	b) Comparison of stability of reaction	
		and group. Mulliken -Jaffee concept-	intermediates	
		oxidation state. hybridization. charge and		
		bond order.		
				(2.2.1)
	IV	Classification of organic compounds,	Laboratory hygiene and safety: Storage and	(20%)
		functional group, nomologous series.	handling of chemicals-corrosive, inflammable,	
		Systems of haming organic compounds-	explosive, toxic, poisonous and carcinogenic	
		IIIPAC system of nomenclature of acyclic	accidents involving toxic and poisonous	
		compounds IUPAC system of	chemicals electrical shock cuts and burns from	
		nomenclature of complex organic	hot objects. Filtration, Heating and stirring	
		compounds- aliphatic hydrocarbons. with	techniques.	
		mono and poly functional groups.		
			Handling of Glassware: Cleaning agents and	
		Polar, non-polar molecules, electron	cleansing methods. Interchangeable glass	
		donating and withdrawing groups. Polar	ground joint apparatus and their advantages.	

	effects-inductive, mesomeric, electromeric and hyperconjugation. Homolytic and heterolytic fission- free radicals, carbocations, carbanions and their structures and stabilities. Electrophiles and nucleophiles.	Calibration and grading of pipette, burette and volumetric flask. Effect of temperature on volumetric glassware. Self-study: Weighing principle in chemical balance and single pan balance.	
V	Alkanes- preparation of alkanes by direct reduction of alkyl halides, Sabatier- Senderens reaction, Wurtz reaction, decarboxylation and Kolbes electrolysis. Relationship between structure and physical properties. Chemical properties of alkanes- isomerisation, aromatization, pyrolysis, combustion, controlled oxidation, nitration, sulphonation, halogenation with relative reactivities of halogens. Alkenes-general methods of preparation of alkenes- dehydrohalogenation, dehydration of alcohols, dehalogenation of vicinal dihalides, controlled reduction of alkynes, Electrophilic addition of alkenes- hydrogenation, (Markovnikov's rule and Kharasch effect with HBr), halohydrin formation, hydration, hydroboration, Oxidative cleavage reactions- ozonolysis and hydroxylation, Substitution reaction of propene at low and high temperature. Tests for alkenes.	Principles and techniques of inorganic qualitative analysis: Semi-micro qualitative analysis - anions (interfering and non- interfering), reactions of some common anions (carbonate, sulphide, sulphate, nitrate, halides, oxalate, borate and phosphate), principle of preparation of sodium carbonate extract and elimination of interfering anions. Classification of cations into groups, reaction of Pb ²⁺ , Cu ²⁺ , Al ³⁺ , Ni ²⁺ , Ca ²⁺ , Ba ²⁺ , Mg ²⁺ and NH ₄ ⁺ cations, group reagents. Applications of Solubility, solubility product principle and common ion effect in group separation of cations. <i>Self-study:</i> <i>Preparation of solution for cation</i> <i>testing on semimicro scale</i> .	(20%)

Course Title	Course	Unit	Existing Content	Modified/Revised content	% of
	code				Revision /
					Modification
Coporal	2011CH1C02	тт	Alkadianas alassification conjugated	Deriodicity and properties: Description of the	(5%)
Chamiatary	20000111002	11	dianas proportion from dial alluma	latest HIDAC periodic table. Atomic radii ionic	(378)
Chemistry –			dienes-preparation from dioi, arkyne,	Tatest TOPAC periodic table. Atomic radii, tonic	
11			dinalide and alkane. Chemical properties-	radii, covalent radii, ionisation energy (IE),	
			1,2 and 1,4 elecrtophilic addition, homo and	electron affinity (EA) and electronegativity (EN)	
			intermolecular cyclisation, Diels-Alder	- variation along period and group. Ionic radii-	
			reaction. Stability of conjugated dienes,	comparison of size of cation and anion, neutral	
			Preparation of poly butadiene, Buna-N and	atom and isoelectronic species. Ionization	
			Buna-S rubbers.	energy-first and successive, factors affecting IE.	
			Allyway anonation from out ond	Electron affinity-factors affecting EA.	
			Alkynes- preparation from gein and	Electronegativity - Pauling's, Mullikan's and	
			vicinal dinalides, tetranalides, lower	Allred Rachow'sscales. Percentage of ionic	
			alkynes. Chemical properties- acidity of	character. Variation of EN with oxidation state,	
			alkynes, catalytic and chemical reductions,	hybridisation, charge and bond order.	
			hydrohalogenation, hydration,		
			hydroboration, oxidation with neutral		
			KMnO ₄ , ozonolysis and	Self-Study:	
			polymerization(dimer, trimer and tetramer),	Electronegativity calculations using Pauling	
			Tests for alkynes.	Mulliken and Allred-Rochow methods	
				number and merca notion memous.	
			Alkyl halides-preparation from		
			alkanes, alkenes, alkynes, alcohols and by		
			halide exchange and Hunsdiecker reaction.		
			Chemical properties- reaction with aqueous		
			alkali, alcoholic alkali (Saytzeff and		
			Hoffmann orientation).Aliphatic		
			nucleophilic substitution- $S_N 1$, $S_N 2$ and		

	SN^{i} mechanisms, Relative reactivities of alkyl halides towards $S_{N}1$ and $S_{N}2$ mechanisms.		
III	Cycloalkanes-synthesis by internal Wurtz reaction, Freund's method, decarboxylation and Dieckmann's condensation, Chemical properties - substitution and ring opening reactions of cyclopropane and cyclobutane. Baeyer's strain theory, Sache-Mohr theory. Aromaticity - Huckle's rule and its applications to benzene, naphthalene, antharacene, phenantharene, [10]annulene, [12]annulene pyridine, pyrrole, cyclopropenyl cation, tropylium cation and cyclopentadienyl anion. Mechanism of aromatic electrophilic substitution reactions of benzene and toluene- halogenation, nitration and acylation of benzene.	 Chemical bonding-I: Ionic bonding- conditions for the formation of ionic bond, characteristics of ionic compounds.Lattice energy, Born-Lande equation (derivation not required), factors affecting lattice energy, Born-Haber cycle-enthalpy of formation of ionic compounds and stability.Covalentcharacter in ionic compounds-Fajan's rules, comparison of solubility, melting points, and thermal stability of typical ionic compounds. Covalent bond: characteristics of covalent compounds, formation of BeCl₂, BCl₃, CH₄, H₂O and C₂H₄. Partial ionic character. Coordinate bond- NH₄Cl, BF₃-NH₃, [Co(NH₃)₆]Cl₃and AlCl₃. Self-Study: a) Solubility and thermal stability of ionic compounds of alkali and alkaline earth metals. b) Comparison of the characteristics of ionic and coordinate compounds. 	(5%)

	IV	Gas Laws - Boyle's, Charles's, Gay Lusac's, Avgadro's, Dalton's and Graham's. Postulates of kinetic theory of gases- derivation of kinetic gas equation-derivation of gas laws, and ideal gas equation. Maxwell's distribution of molecular velocities (derivation not necessary). Root mean square velocity, average velocity and most probable velocity, Mean free path, Collision diameter and collision frequency	Chemical bonding-II: Valance bond theory- arrangement of electrons in molecules, hybridization of atomic orbitals and geometry of molecules. VSEPR model-effect of bonding and nonbonding electrons on the structure of molecules, illustration of structures by VSEPR model- BeF ₂ , BF ₃ , CH ₄ , NH ₃ , H ₃ O ⁺ ,SF ₄ , CIF ₃ , ICl ₄ , ICl ₂ , IF ₇ , XeF ₂ , XeOF ₂ , XeF ₄ , XeF ₆ . Molecular orbital theory- MO diagrams of diatomic and simple polyatomic molecules N ₂ , O ₂ , C ₂ , B ₂ , F ₂ , CO, NO and their ions - bond order and stability of molecules.	(5%)
			 Weak Chemical Forces - Hydrogen bonding, Vander Waals forces. Self-Study: a) The importance of lone pair-lone pair and lone pair-bond pair electron interactions in determining structure of molecules and illustration. b) Calculation and comparison of bond order and determining stability of homo- 	
	V	Colloids- classification, preparation and purification. Origin of charge of colloidal particles, stability of colloids. Properties of Colloids- Tyndall effect, Brownian movement,Helmoltz electrical double layer, elctrophoresis, eletroosmosis, coagulation, protective action of sols (gold number). Applications- blue colour of the sky,clarification of water, formation of	Alkanes: Alkanes-preparation by the reduction of alkyl halides, Sabatier- Senderens reduction. Wurtz reaction, decarboxylation and Kolbe's electrolysis. Relationship between structure and physical properties. Chemical properties - isomerisation, aromatization, pyrolysis, combustion, controlled oxidation, nitration, sulphonation, relative reactivity and selectivity	(10%)

delta, electrical precipitation of smoke.	of halogenations.	
Solid state-crystalline and amorphous solids-differences between them-definitions of space lattice, Unit cell, Crystal systems, Bravais lattices. Weiss and Miller indices, Number of atoms in simple, face centred and body centred cubic cells, Structure of CsCl and NaCl.Liquid crystals- types, properties and applications.	 Cycloalkanes:Synthesis by internal Wurtz reaction, Freund's method, decarboxylation and Dieckmann's condensation. Chemical properties substitution and ring opening reactions of cyclopropane and cyclobutane. Baeyer's strain andSache-Mohr theories. Self-Study: a) Comparision of boiling point, melting point and density of alkanes. b) Relative stability of ring compounds. 	
Total Percentage of course content Modified	l/Revised	25%

Course Title	Course	Unit	Existing Content	Modified/Revised content	% of
	code				Revision /
					Modification

General Chemistry III	20UCH2C03	I	Metallurgy: Concentration of ores- Gravity separation, Froth floatation, Magnetic separation, Chemical separation, Calcination and Roasting. Reduction of free metal- smelting, using CO, Alumino- thermic, Electrolytic reduction, Purification - electrorefining, zone refining, thermal decomposition-Mond's and Van Arkel processes. Ellingham diagram for oxidation of metals to metal oxides.	Atomic structure – II: Wave mechanical model - verification by Davisson and Germer experiment. Schrodinger wave equation- derivation, physical significance of Ψ and Ψ^2 . Charge cloud concept and shapes of <i>s</i> , <i>p</i> , <i>d</i> and <i>f</i> orbitals. Nodes and nodal planes. Origin, description and salient features of quantum numbers (<i>n</i> , <i>l</i> and <i>m</i>). Zeeman effect and spin quantum number. Salf-Study:	(5%)
			<i>s-Block</i> elements: Properties- factors affecting lattice energy of ionic solids, factors affecting andvariation of hydration energy of ions in periodic table. Diagonal relationship (Li & Mg, Be & Al) in the periodic table. Extraction of Lithium. Complexes of alkali metals-the wrap around complexes and their biological importance.	a) Problems on de Broglie's equation. b) Filling of electrons in polyelectronic atoms	
		Π	<i>p-Block</i> elements: Variation of properties - valency, atomic radius, ionisation energy, electron affinity, electronegativity, metallic character, oxidising and reducing properties, diagonal relationship between boron & silicon and inert pair effect. Oxides - Classification based on chemical behaviour and oxygen content. Hydrogen peroxide - preparation, properties, structure and uses (including volume calculation). Oxy acids of Sulphur -Preparation, properties and uses of sulphuric acid, Caro's	 <i>s-Block</i> elements -Properties – Lattice energy of ionic solids, hydration of ions, relative stability of different oxidation states, ionic conductance. Complexes of alkali metals - wrap around complexes. Comparison of Li and Be with their family members. Diagonal relationship between Li and Mg, Be and Al. Chemistry of sodamide and calcium carbide. Manufacturing and setting of Portland cement. <i>Self-Study:</i> a) The factors favoring the formation of ionic compounds by s-block elements. b) Uses of s-block metals 	(5%)

		1 1 1 1 1 1 1 1 1		
		acid, Marshall's acid and oleum.		
	IV	Alcohols: General classification	Alkyl halides-preparation from alkanes alkenes	Existing
	1.	monohydria alcohola classification	alkymas alcohols Hunsdigskar reaction and	contont
		nomonoloture accounts - classification,	holida avalance. Chamical properties reaction	moved to
		nomenciature - common, IUPAC and	nande exchange. Chemical properties- reaction	moved to
		carbinol. Preparation of alconols with	with aqueous and alconolic alkali (Saytzerf and	unit v or
		mechanisms - hydrolysis of alkyl halides,	Hoffmann orientation). Aliphatic nucleophilic	new course
		hydration of alkenes into primary,	substitution- $S_N I$, $S_N 2$ and $S_N 1$ mechanisms with	20UCH3C05
		secondary and tertiary alcohols,	stereochemistry, relative reactivities of 1°, 2°,	(5%)
		hydroboration,	and 3° alkyl halides towards S_N1 and S_N2	(0,0)
		oxymercuration/demercuration of alkenes,	mechanisms.	
		reduction of aldehydes, ketones &esters, and	Salf Studie Application of Holfmann and	
		hydrolysis of esters. Manufacture of ethyl	Seij-Siudy: Application of Hoffmann and	
		alcohol from molassesand starch, rectified	Saytzeff rules.	
		spirit absolute alcohol and denatured		
		alcohol. Physical properties - boiling points		
		and solubility with reference to hydrogen		
		bonding and hydrophobic nature. Chemical		
		properties - acidic nature, reaction with-		
		carboxylic acids, acid halides and		
		anhydrides, hydrogen halides and		
		phosphorous halides. Iodoform test,		
		oxidation, dehydrogenation and		
		dehydration. Distinction among primary,		
		secondary and tertiary alcohols.		
		Interconversion of alcohols-Lower primary		
		to higher primary, primary to secondary,		
		secondary to tertiary alcohols. Breath		
		· ·		,

	analysis test.		
V	Phenols : Classification and nomenclature, Preparation- from sulphonic acids, diazonium salts, aryl halides, sodium tests of carboxylic acids and cumene. Physical properties and chemical properties- Acidic character, effect of substituents on the acidity of phenol, reaction with neutral ferric chloride, sodium, zinc dust and ammonia. Oxidation, esterification and Williamsons synthesis. Electrophilic substitution- halogenation, nitration, sulphonation, Friedel-Craft's alkylation and acylation, phthalein fusion, mechanisms of reactions - coupling, Reimer-Tiemann, Kolbe-Schmidt, Liebermann and Gattermann. Dihydric phenols-Dakin's reaction, Houben -Hoeschreactionand Fluorescein formation. Tests for phenols.	Aromaticity - Huckle's rule. Aromaticity of benzene, naphthalene, antharacene, phenantharene, [10]annulene, [14]annulene, pyridine, pyrrole, cyclopropenyl cation, tropylium cation and cyclopentadienyl anion. Mechanism of aromatic electrophilic substitution reactions of benzene and toluene - halogenation, nitration, sulphonation, Friedel- Crafts alkylation and acylation. Activating and deactivating substituents, orientation and ortho/para ratio, side chain reactions (chlorination & oxidation) of toluene. <i>Self-Study:</i> Orientation of electrophiles on mono substituted benzene.	(5%)
	1 otal Percentage of course content Modified	yKevisea	20%

Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of
					Revision /
					Modification
General	20UCH2C04	Ι	<i>f</i> -Block elements: Position in the periodic	Solid state-crystalline and amorphous solids -	(7%)
Chemistry IV			table, lanthanides - electronic	space lattice, unit cell, crystal systems, Bravais	
			configuration, oxidation states, lanthanide	lattices. Weiss and Miller indices, number of	
			contraction - cause and consequences,	atoms in simple, face centred and body centred	
			complex formation, occurrence and	cubic cells. Structure of CsCl and NaCl.	

	extraction from monazite, separation of monazite by ion exchange method. Compounds of lanthanum - oxides and halides, uses of lanthanides. Actinides: general features of actinides - electronic configuration, oxidation states, ionic radius, actinide contraction, colour of ions and formation of complexes. Separation of Np, Pu and Am from uranium, trans uranic elements. Similarities and differences between lanthanide and actinides.	Packingof ions in solids - radius ratio, coordination number in ionic crystals. Liquid crystals - types, properties and applications.Crystal defects - stoichiometric defects - Schottky and Frenkel defects. Non – stoichiometric defects-metal excess and metal deficiency defects. <i>Self-study: Coordination numbers of cations and anions in ionic crystals from radius ratio</i>	
п	Nuclear Chemistry: Composition of nucleus, properties of α , β and γ rays, nuclear forces (meson theory) - nuclear stability- mass defect, binding energy, packing fraction, n/p ratio and magic numbers. Isotopes, isobars, isotones and isomers and mirror nuclei (basic idea only). Detection of isotopes by Aston's mass spectrograph method. Radioactive disintegration- modes of decay, rate of disintegration, half-life period, average life and radioactive disintegration series. Nuclear fission- atom bomb, nuclear power generator, nuclear fusion - hydrogen bomb and stellar energy, uses of radioactive isotopes- in medicine, analytical chemistry and carbon dating.	 Ideal solutions: Vapour pressure- composition diagrams of solutions. Raoult's law, positive and negative deviations from the law. Solubility of gases in liquids - Henry's law and its relationship with Raoult's law. Lowering of vapour pressure - thermodynamic derivation for elevation of boiling point and depression of freezing point. Relationship between osmotic pressure and vapour pressure. van't Hoff's theory of dilute solutions. Colloids- classification, preparation and purification. Properties- Tyndall effect, Brownian movement, Helmoltz electrical double layer, electrophoresis, electro-osmosis, coagulation and protective action of sols (goldnumber). Self-study: Applications of Colloids 	(10%)

ш	 Thermodynamics: Systems, Surroundings, Boundary, Intensive and Extensive properties. Concept of heat and work. State and Path functions, Thermodynamic processes. First law of thermodynamics: Statement, definition of internal energy and enthalpy. Heat capacity - at constant volume and pressure and their relationship. Joule's law, Joule-Thomson coefficient and inversion temperature. Calculation of w, q, dU and dH for the expansion of ideal gases under isothermal and adiabatic conditions for reversible process. Thermochemistry: Standard state, standard enthalpy of formation. Hess's law of heat summation and its applications. Heat of reaction at constant pressure and volume. Enthalpy of combustion, Enthalpy of neutralisation. Bond dissociation energy and its calculation from thermo-chemical data, temperature dependence of enthalpy. Kirchhoff's equation. 	Gas Laws - Boyle's, Charles's, Gay Lusac's, Avgadro's, Dalton's law of partial pressure and Graham's law of diffusion. Postulates of kinetic theory of gases-derivation of kinetic gas equation-derivation of gas laws and ideal gas equation. Maxwell's distribution of molecular velocities, root mean square velocity, average velocity and most probable velocity (derivation not necessary). Mean free path, collision diameter and collision frequency. Law of vander Waal's equation and critical state. Relationship between critical constants and vanderWaal's constants. Self-study: Problems based on kinetic gas equation.	(7%)
IV	 Second law of thermodynamics: Need for the law, different statements, Carnot cycle and its efficiency, Carnot theorem. Thermodynamic scale of temperature. Concept of entropy: entropy as a state function, entropy as a function of V & T and P & T, entropy change in physical 	Ethers -IUPAC nomenclature, preparation- dehydration of alcohols and Williamson synthesis. Chemical properties - formation of oxonium salts, etherate and peroxides, cleavage by acids and halogenation. Determination of alkoxy group by Ziesel's method. Crown ethers – 12 crown 4, and 15 crown 5. Epoxides - Preparation, chemical reactions – acid	(20 %)

	change, Clausius inequality, entropy as criteria of spontaneity and equilibrium. Entropy change in ideal gases and mixing of gases, entropy change in natural processes.Gibbs function (G) and Helmholtz function (A) as thermodynamic quantities, A and G as criteria for thermodynamic equilibrium and spontaneity, their advantage over entropy change. Variation of G, and A, with P, V, and T. Third law of thermodynamics: Nernst heat theorem, statement and concept of residual entropy, evaluation of absolute entropy from heat capacity data.	 hydrolysis, HBr, C₂H₅OH/ C₂H₅ONa, RNH₂ and RMgX. Thioethers - IUPAC nomenclature, preparation- from alkyl halide, mercaptans and alkenes. Chemical reactions- metal salts, alkyl halides, oxidation, hydrolysis and halogenation. Self-study: a) Preparation, properties and uses of anisole. b) Orientation of epoxides in ring opening. 	
· · · · ·	Total Percentage of course content Modified	/Revised	44%

Course Title	Course	Unit	Existing Content	Modified/Revised content	% of
	code				Revision /
					Modification
Inorganic,	20UCH3C05	I-V		New Course introduced with shuffling	30%
Organic and				the existing content with 30% of revised	
Analytical				<mark>content.</mark>	
Chemistry					
			Total Percentage of course content Modified	l/Revised	30%

Course Title	Course	Unit	Existing Content	Modified/Revised content	% of
	code				Revision /
					Modification
					• • • • • •
Physical,	20UCH3C06	I-V		New Course introduced with shuffling	30%
Organic and				the existing content with 30% of revised	
Analytical				content.	
Chemistry					
			Total Percentage of course content Modified	d/Revised	30%

Course Title	Course	Unit	Existing Content	Modified/Revised content	% of
	code				Revision /
					Modification
Coordination Chemistry	20UCH5C07	III	Applications of coordination compounds in quantitative analysis - gravimetric estimation of nickel using DMG and aluminum using oxine, estimation of hardness of water using EDTA.Structures and functions of chlorophyll and hemoglobin. Metal carbonyls-general methods of preparation, nature of M-CO bond, structure of Ni(CO)4, Fe(CO)5, Fe2(CO)9, Mn2(CO)10 and Co2(CO)8	Magneticproperties-typesofmagneticbehaviour,spin-onlyformula,calculationofmagneticmoment,experimentaldeterminationofmagneticsusceptibility – Gouymethod.Applications-complexometrictitrations–principleandapplications.Qualitativeseparationofsilverandmercury,copperandandmercury,copperusingDMGandaluminiumusingoxine.EstimationofhardnessofwaterusingEstimationofhardnessofCobalt,ZincandIron.itativeanalysisofCobalt,Zinc	10%
		IV	Calculation of number of atoms in simple	Organometallic compounds-introduction -	10%
			cubic (SC), face centered cubic (FCC) and	definition and classification of organometallic	
			body	compounds based on bond type.Nature of Metal-	
				Carbon bond. Metal carbonyls - 18 electron rule,	

centered cubic (BCC) unit cells. Symmetry in crystals - symmetry operations and symmetry elements - plane of symmetry, axis of symmetry and centre of symmetry.Symmetry elements of a cubic crystal.Semiconductors - intrinsic and extrinsic - n-type and ptype.Electron gas theory and band theory of metals	electron count of mononuclear and binuclear complexes of 3 <i>d</i> series. General methods of preparation, properties and structure of Ni(CO) ₄ , Mn ₂ (CO) ₉ , Fe(CO) ₅ , Co ₂ (CO) ₈ . Self-study:Preparation, properties and uses of Zeise's salt and Ziegler-Natta Catalyst.	
Alloys - simple mixtures, solid solutions, substitutional and interstitial alloys. Hume - Rothery ratios and their applications. Structure of the ionic crystals - AX type - NaCl, CsCl and ZnS -(zinc blende and wurtzite structures), AX2 type - CaF2 and TiO2. Limiting radius ratio rule- coordination number and shape of the ionic crystals. Defects in crystal structures: stoichiometric defects - Schottky and Frenkel defects. Non - stoichiometric defects-metal excess and metal deficiency defects.	Bio-Inorganic chemistry: Biological functions and toxicity of trace elements: Cr, Mn, Cu, Ar, Hg, Cd, Fe, Mo. Se. Zn, I, Pb. Role of Na ⁺ , K ⁺ , Mg ²⁺ , and Ca ²⁺ in biological system. Structure and functions ofhemoglobin and chlorophyll. Structure and functions of carbonic anhydrase.Nitrogen fixation in atmosphere. <i>Self-study:Structure and functions of myoglobin</i> <i>and Carboxy peptidase</i> .	15%
Total Percentage of course content Modified	l/Revised	35 %

Revision /
Modification
200/
2070
<mark>-</mark> c
L,
LL •
* 9
1- 1
1
_
<mark>d</mark>
f 5%
d
c
.,
f
1
c
b
f
1
c
S S S S S S S S

	antipyrine from ethylacetoacetate.	and fumaric acids.	
IV	Heterocycliccompounds-preparationandreactionsofpyrroleandpyridine.Comparisonofbasicitiesofpyridineandpyrrole.Synthesisandreactionsofquinoline, isoquinolineandindole.Vitamins -classification, sourcesanddeficiencydiseases.Terpenoids-isolationandisoprenerule.StructuralelucidationandsynthesisofgeraniolandAlkaloids-structuralelucidationandsynthesisofconiineandsynthesisofconiineand	Heterocycliccompounds-preparation,basicity,electrophilic&nucleophilicsubstitution,oxidation and reduction reactionsofpyrrole,furan,thiopheneandpyridine.Synthesisofquinoline (Skraup),isoquinoline(Bischler-Napieralski)andIndole (Fischer-Indole)-electrophilicandnucleophilicreactions.Terpenoids-isolationandisoprenerule.Structural elucidation and synthesis of α -terpeniol.Self-study:Structural elucidation and synthesisof geraniol.	10%
	Total Percentage of course content Modified	d/Revised	35%

Course Title	Course	Unit	Existing Content	Modified/Revised content	% of
	code				Revision /
					Modification
		Ι	Ohm's law and electrical units.	Ionic mobility - Ohm's law and electrical	5%
			Electrolysis – Faraday's law of	units. Arrhenius theory of electrolytic	
			electrolysis. Conductance of	dissociation and its limitations.Electrolysis -	
			electrolytes - specific conductance,	Faraday's laws of electrolysis. Conductance of	
sElectrochemistry	18UCH5C07		equivalent conductance and molar	electrolytes.Variation of specific and molar	
			conductance -	conductance with dilution. Ionic mobility -	
			experimental determination of molar	abnormal mobilities of hydrogen & hydroxyl	
			conductance. Types of electrolytes.	ions and Walden's rule. Transport number-	
			Variation of	determination by Hittorf's and moving	

	specific and molar conductance with	boundary methods.Kohlrausch's law and its	
	dilution. Transport number and ionic	applications. Applications of conductance	
	mobility's-	measurements - determination of solubility	
	determination of transport number -	product, degree of dissociation, ionic product	
	Hittorf's and moving boundary	of water and conductometric titrations - acid-	
	methods. Kohlrausch's	base and precipitation.	
	law and its applications. Abnormal	Salf-study Types of electrolytes Ostwald's	
	mobilities of hydrogen and hydroxyl	dilution law and its limitations	
	ions.	anation law and its initiations.	
II	Arrhenius theory of electrolytic	Inter-ionic effects - Debye-Huckel theory of	5%
	dissociation and its limitations.A	strong electrolytes.Debye-Falkenhagenand	
	qualitative discussion of	Wein effects. Activity and activity coefficient	
	interionic forces and their influence on	of strong electrolytes (definition	
	conductance Applications of	only). Dissociation of weak acids and bases –	
	conductance	relative strengths.pH and pH scale, common	
	measurements - determination of	ion effect and solubility product - applications	
	solubility product degree of	of solubility product principle. Buffer	
	dissociation ionic product	solutions - types of buffers and buffer action -	
	of water and conductometric titrations	Henderson's equation. Hvdrolvsis of salts -	
	acid has and precipitation Activity	hydrolysis constant and degree of hydrolysis	
	- actu-base and precipitation. Activity	of salts of weak acids& strong bases and weak	
	and activity	acids & weak bases.	
	(definition only)		
	(definition only)	Self-study:Hydrolysis of salts - hydrolysis	
		constant and degree of hydrolysis of salts	
		ofstrong acids &weak bases.	
III	Dissociation of weak acids and bases –	Electromotive force - electrochemical cells -	2%
	relative strengths.pH - definition,	galvanic cells - cell terminology -	
	common ion effect	representation of cell - calculation of EMF of	
	and solubility product - applications of	the cell.Reversible and irreversible cells.	

	solubility product principle. Buffer solutions – typesof buffers and buffer action - Henderson's equation. Hydrolysis of salts - hydrolysis constant and degree of hydrolysis of salts - weak bases and strong acids , weak acids and strong bases and weak acids and weak bases.	Types of electrodes –metal-metal ion electrode, gas electrode- standard hydrogen electrode, amalgam electrode, metal-insoluble salt electrode-calomel and Ag/AgCl, oxidation-reduction electrodes. Single electrode potential - determination. Nernst equation for electrode and cell potentials. Electrochemical series and its applications. Thermodynamic concept of electrode potential.Relation between EMF and thermodynamic quantities ΔG , ΔH , ΔS and their significance. <i>Self-study:Weston standard cell</i>	
V	Concentration cells - types - derivation of EMF of concentration cells with and without transference. Liquid Junction potential - definition (derivation not necessary) and its elimination. Application of EMF measurements - potentiometric titrations - acid base, precipitation and redox titrations - determination of solubility of a sparingly soluble salt,determination of pH using glass, quinhydrone and hydrogen electrodes. Commercial cells -Acid storage battery. Rechargeable cells - nickel cadmium and lithium ion cells. Fuelcells.Electrochemical principle of rusting of iron.	Metallic coating – introduction, anodic and cathode coatings. Coating processes – metal cladding and hot dipping – galvanishing, tinning, electroless plating. Electroplating and its applications. Corrosion – electrochemical principle of rusting of iron, prevention of corrosion-barrier, sacrificial and cathodic protections. Passivity of metals. Commercial cells – Acid storage battery. Rechargeable cells – nickel cadmium and lithium ion cells. Fuel cells – Hydrogen-oxygen fuel cell. <i>Self-study:Hydrocarbon-oxygen fuel cell</i>	15%

Course Title	Course	Unit	Existing Content	Modified/Revised content	% of
	code				Revision/
					Modification
Inorganic Chemistry	20UCH6C12	I	Covalency and oxidation number, difference between oxidation number and valency. Rules for calculating oxidation number.Oxidation and reduction, common oxidising agents and reducing agents.Equivalent weight of common oxidising and reducing agents. Balancing redox equations using oxidation number method. Extraction of Mn, Co and Ni.Preparation, properties and uses of potassium permanganate, potassium dichromate and ferrous sulphate.	Oxidation number - covalency and oxidation number, difference between oxidation number and valency. Rules for calculating oxidation number. Oxidation and reduction, common oxidizing agents and reducing agents. Balancing redox equations using oxidation number method. Oxides: Classification based on oxygen content and chemical behavior. H_2O_2 : preparation, structure, and properties. <i>Self-Study:</i> Calculation of volume strength and uses of H_2O_2 .	10%
		Π	Occurrence, extraction, chemical properties and uses of boron.Preparation, properties, structure and uses of diborane, sodium borohydride, boric acid, borax and boron nitride-borax bead test.Borazine- preparation, chemical properties and structure – comparison of borazine with benzene.	Noble gases – occurrence, isolation, inertness and uses. Clathrate compounds.Preparation, structure and properties of XeF ₂ , XeF ₄ , XeF ₆ , XeO ₃ and XeOF ₄ . Interhalogen compounds - preparation, structure, properties and uses of ICl, IBr, ICl ₃ , IF ₅ , and IF ₇ . <i>Self-Study:Preparation, properties, uses and</i> <i>structures of ClF, and ClF₃</i> .	5%

III	Compounds of silicon-quartz, tridymite, cristobalite and carborundum.Silicates- types, structures and uses.Isolation of noble gases from liquid air-clathrate compounds-types and properties. Preparation, properties and structures of – XeF ₂ , XeF ₄ , XeF ₆ , XeO ₃ and XeOF ₄ Inter halogen compounds: preparation, properties, uses and structures of-ICl, IBr, ICl ₃ , IF ₅ and IF ₇ .	Acids and Bases - Arrhenius concept, Lowry - Bronsted concept - conjugate acid - base pair, Lewis concept. Relative strength of acids and bases-effect of solvent, levelling effect-polarity and dielectric constant. Hard and Soft Acids, Bases (HSAB) principle, and their applications.Non-aqueous solvents- classification of solvents, characteristic properties of a solvent. Physical properties, chemical reactions, advantages and limitations of liquid ammonia, and liquid sulphur dioxide. Self-Study:Relative strength of acids and bases -effect of electron releasing and electron withdrawingsubstituents, oxidation number of central atom and resonance effect.	5%
	Total Percentage of course content Modified	1/Revised	20%

Course Title	Course	Unit	Existing Content	Modified/Revised content	% of
	code				Revision /
					Modification
			Isomerism: structural and	Isomerism -concept and types. Optical	10%
			stereoisomerism - geometrical	isomerism-elements of symmetry, plane	
Stereochemistry.			isomerism-Cahn – Ingold - Prelog rules	polarized light, molecular chirality,	
Freeradicals	20UCH6C13		for priority of groups, E-Z notation,	dissymmetric, asymmetric, chiral and achiral	
and			determination of configuration of	molecules with two stereogeniccentres.	
Biomolecules			geometrical isomers by physical and	Enantiomers and diastereomers, anomers,	
			chemical methods. Optical isomerism,	epimers and meso compounds. Racemization -	
			plane polarized light, chirality,	resolution, mechanism of racemization.	

enantiomers, diastereomers, anomers, epimers, optical isomerism in lactic acid and tartaric acid. R-S configuration.	 Epimerization. Walden inversion, retention and asymmetric synthesis.Relative and absolute configuration. Sequence rules–R/S nomenclature. Geometrical isomerism, E/Z nomenclature. Self-study: Determination of configuration of geometrical isomers by physical and chemical methods. 	
Conformational analysis - distinction between conformation and configuration.Conformations and potential energy diagrams of ethane and n-butane. Conformations of cyclohexane- chair, half chair, boat and twist forms. Methyl cyclohexane, conformations and stabilities of 1,2 – dimethylcyclohexane, 1,3 – dimethylcyclohexane and 1,4 – dimethylcyclohexane, conformations in cyclohexanol, cyclohexane-1,3- diol and cyclohexane-1,4,-diol.	Conformational analysis-distinction between conformation and configuration, Conformational analysis of ethane, n-butane and cyclohexane. Axial–equatorial inter conversion-conformation and stabilities of methyl cyclohexane,1,2–dimethyl cyclohexane,1,3–dimethyl cyclohexane and 1,4–dimethyl cyclohexane. <i>Conformations in</i> <i>cyclohexanol, cyclohexane-1,3- diol and</i> <i>cyclohexane-1,4,-diol.</i> Self-study: Cis-trans isomerism in substituted cycloalkanes	5%
Free radicals-classification, generation of free radicals, detection of free radicals, configuration of free radicals and relative stabilities of alkyl free radicals. Stability of triphenylmethyl free radical, reactions involving free radicals-polymerization, allylic bromination by NBS, autoxidation,	Reaction intermediates -free radicals - classification, generation, detection, and configuration. Relative stabilities of alkyl and triphenylmethyl free radicals. Reactions - polymerization, allylic bromination by NBS, autoxidation, Sandmeyer, Gomberg and Ullmannreactions. Generation of carbenes and	5%

Sandmeyer reaction, Gomberg and Ullmann reactions.	nitrenes. Self-study: Reactions involving carbene and nitrene-Reimer Tiemann reaction and Hoffmann rearrangement.	
Addition reactions of alkenes - electrophilic, nucleophilic and free radical addition reactions. Mechanisms of addition of H ₂ , halogens and hydrogen halides to carbon – carbon double bond systems, Markovnikov's rule and Kharasch-peroxide effect, cis- hydroxylation and hydroboration. Synthetic uses of diazomethane and perbenzoic acid.	Carbohydrates – classification, preparation and properties of glucose and fructose.Cyclic structures - pyranose and furanose forms. Mutarotation and its mechanism. Configuration of monosaccharides,epimerisation, chain lengthening and chain shortening of aldoses. Inter conversions of glucose and fructose. Disaccharides – reactions and structure elucidation of sucrose. Self-study: Polysaccharides-structure of starch and cellulose, industrial uses of cellulose	15%
Carbohydrates- classification - elucidation of open chain structure of glucose and fructose, mutarotation, interconversions between glucose and fructose, reducing and non-reducing sugars. Amino acids and proteins: Amino acids-classification and general methods of preparation and properties. Peptide synthesis by Bergmann method, proteins-classification, primary and	 Amino acids -classification, essential and non- essential amino acids, preparation and properties of α-amino acids. Synthesis of peptides, end-group analysis. Proteins – classification, primary and secondary structures. Nucleic acids – DNA and RNA-composition, structure of DNA and its role in heredity and DNA replication. 	15%

		secondary and	tertiary	structures.	Self-study: Denaturation and renaturation of	
		Colour test for p	roteins.		proteins, colour test for proteins	
Total Percentage of course content Modified/Revised						

Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of Revision / Modification
Physical Chemistry	20UCH6C14	I	Phase rule – Definition of phase, component and degrees of freedom. Derivation of phase rule.Application of phase rule to one component systems – phase diagrams of H ₂ O, CO ₂ and sulphur systems.Application of phase rule to two component systems – lead-silver and zinc-magnesium systems.Phase diagrams for two component liquid systems – completely miscible and partially miscible (Phenol-water, triethylamine- water and nicotine-water) systems.Principle of steam distillation. Nernst distribution law and its applications.	Phase rule – definition of phase, component and degrees of freedom. Derivation of phase rule.Application to one-component systems – H ₂ O, CO ₂ and sulphur. Application to two component systems – lead-silver and zinc- magnesium. Two component liquid systems - Phenol-water, triethylamine-water and nicotine- water.Distillation of immiscible liquids-steam distillation. <i>Self-study: Phase diagrams of Bi-Cd and KI-</i> <i>H₂O systems</i>	5%
		II	Chemical Kinetics: Definition of rate and rate constant dimensions of rate and rate constant. Order and molecularity – differences.Derivation of rate constants for zero, first and second order	Chemical Kinetics - definition of rate and rate constant, dimensions of rate and rate constant. Order and molecularity – differences. Derivation of rate constants and half-life of zero, first and second order reactions. Pseudo first-order	5%

VPhotochemical reactions. Difference between photochemical and thermochemical reactions. Laws of photochemistry - Lambert Beer's, Grotthus Draper law and Stark Einstein's law. Quantum yield - definition and experimental determination(actinometry). Photochemical reactions of low and high quantum yields.Kinetics of hydrogen- bromine and hydrogen-chlorine reactions.Photosensitization and quenching.Definition phosphorescence, flow and hydrogen-chlorine reactions.Photosensitization and phosphorescence.Photochemical reactions - difference between photochemical and thermochemical reactions. Laws of photochemistry - Lambert Beer's, Grotthus Draper, and Stark Einstein's laws. Quantum yield - definition and types. Photochemical reactions of low and high quantum yields.Kinetics of hydrogen- bromine and hydrogen-chlorine reactions.Photosensitization and phosphorescence, fluorescence and phosphorescence.Photochemical reactions. Basic idea on fluorescence, and bioluminescence, Group theory - Symmetry elements and symmetry operation. Group-requirements and types-abelian and non-abelian. Point group of water and ammonia. Group multiplication table of C3W point group.20%			reactions.Examples for fractional and higher order reactions. Various methods of determining order of a reaction. Effect of temperature on reaction rate, Arrhenius equation – calculation of energy of activation.	reaction – acidcatalyzed ester hydrolysis. Examples for fractional and higher order reactions. Various methods of determining order of a reaction. Arrhenius equation – calculation of energy of activation. Complex reactions – consecutive, reversible, parallel and chain reactions – definition and examples. Self-study: Effect of temperature on reaction rate.	
Total Percentage of course content Modified/Revised 20%		V	Photochemical reactions. Difference between photochemical and thermochemical reactions. Laws of photochemistry – Lambert Beer's, Grotthus Draper law and Stark Einstein's law. Quantum yield – definition and experimental determination(actinometry). Photochemical reactions of low and high quantum yields.Kinetics of hydrogen- bromine and hydrogen-chlorine reactions.Photosensitization and quenching.Definition of chemiluminescence, fluorescence and phosphorescence.	Photochemical reactions -difference between photochemical and thermochemical reactions. Laws of photochemistry – Lambert Beer's, Grotthus Draper, and Stark Einstein's laws. Quantum yield – definition and types. Photochemical reactions of low and high quantum yields.Kinetics of hydrogen-chlorine and hydrogen-bromine reactions. Basic idea on fluorescence, phosphorescence, chemiluminescence and bioluminescence. Group theory - Symmetry elements and symmetry operation. Group-requirements and types-abelian and non-abelian. Point group of water and ammonia. Group multiplication table of C _{2V} point group. Self-study: Group multiplication table of C _{3V} point group.	10%
	I		Total Percentage of course content Modified	VRevised	20%

Course Title	Course code	Unit	Existing Content	Modified/Revised content	% of Revision/ Modification	
Industrial Chemical Analysis	20UCH5EP2		a fort and	New Course Created by splitting the existing course 19UCHCH6CP4 with 25% of new content.	25%	
Total Percentage of course co	ntent Modified/Revise	đ			25%	
Industrial Chemistry Environmental Chemistry	20UCH5EA1 20UCH5EB1			New Course pool created and one of the course chosen by the students will be	100%	
Polymer Chemistry	20UCH5EC1			denvered.		
Total Percentage of course content Modified/Revised						
Dye Chemistry	20UCH6EA2	1				
Biochemistry	20UCH6EB2			New Course pool created and one of the course chosen by the students will be	100%	
Introduction to nanochemistry and applications	20UCH6EC1			delivered.		
	Tota	l Percentage o	f course content Modified/H	Revised		
Modular Course: Chemistry for Entrepreneurship	20UCH6MC1			New Course Introduced	100%	
	Total Po	ercentage of co	urse content Modified/Revi	ised	100%	

L'Aman Chairman

Board of Studies

PRINCIPAL SRI RAMAKRISHNA MISSION VIDYALAYA College of Arts and Science Coimbatore-641020.